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By carrying out random walk simulations we systematically
study the effects of various types of complex molecular dynamics
on H NMR experiments in solids. More precisely, we calculate
one-dimensional (1D) *H NMR spectra and the results of two
dimensional (2D) ?H NMR experiments in time domain, taking
into account isotropic as well as highly restricted motions which
involve rotational jumps about different finite angles. Although
the dynamical models are chosen to mimic the primary and sec-
ondary relaxation in supercooled liquids and glasses, we do not
intend to describe experimental results quantitatively but rather to
show general effects appearing for complex reorientations. We
carefully investigate whether 2D ?H NMR in time domain, which
was originally designed to measure correlation times of ultraslow
motions (7 = 1 ms), can be used to obtain shorter 7, too. It is
demonstrated that an extension of the time window to 7 = 10 us
is possible when dealing with exponential relaxation, but that it
will fail if there is a distribution of correlation times G(lgz). Vice
versa, we show that 1D ?H NMR spectra, usually recorded to look
at dynamics with = in the microsecond regime, are also applicable
for studying ultraslow motions provided that the loss of correla-
tion is achieved step by step. Therefore, it is useful to carry out 1D
and 2D NMR experiments simultaneously in order to reveal the
mechanism of complex molecular motions. In addition, we dem-
onstrate that highly restricted dynamics can be clearly observed in
1D spectra and in 2D NMR in time domain if long solid-echo
delays and large evolution times are applied, respectively. Finally,
unexpected observations are described which appear in the latter
experiment when considering very broad distributions G(Ig7). Be-
cause of these effects, time scale and geometry of a considered
motion cannot be extracted from a straightforward analysis of
experimental results. © 2000 Academic Press

Key Words: 1D *H NMR; 2D *H NMR; random walk simula-
tions; molecular dynamics; disordered systems.

1. INTRODUCTION

NMR, it is possible to look at ultraslow motions which are
typically characterized by time constants in the range from
about a few milliseconds to some seconds. For example, usir
2D ?H NMR in time domain allows one to measure the cerre
lation functionf, of the second Legendre polynomial, where
the latter describes the molecular orientati@). (Thus, the
corresponding correlation timeof ultraslow reorientations is
directly accessible.

In the first applications of 1D and 2EH NMR, compara
tively simple types of molecular dynamics were studied or, at
least, simple dynamical models were used in an analysis of th
results. Concerning 1D spectra, rotational jumps occurring
about a single axis and among a small number of sites wer
mainly under investigation, e.gs flips (3, 4) or 27/3 (5) and
27/5 jumps @). Sometimes, small angle fluctuations about the
jump axis -9 or a wobbling of the axis itself10) were
additionally taken into account. In the early days of 2B
NMR, similar kinds of motion were consideretil-15. When
looking at isotropic dynamics, the model of isotropic rotational
diffusion was applied to simulate measured 1D and 2D spectre
respectively {, 16. Only recently, 2D NMR in time domain
was also used to reveal the mechanism of more comple
molecular dynamics, i.e., rotational jumps taking place
about various axes and involving different finite jump angles
(17-29.

In a forthcoming publication, we will study complex molec-
ular dynamics connected with the primary and secondary re
laxation in supercooled liquids and glasses by applying 1D an
2D *H NMR experiments Z1). However, due to the compli
cated properties of these motions and the structure of th
involved pulse sequences, unexpected findings appear in th
inquiry which make a straightforward analysis of the results
impossible. For a better understanding of these experiment
observations, we will here systematically investigate the ef

NMR is well suited to study slow molecular dynamics irfects of various types of complex molecular dynamics’dn
solids. In particular, variousH NMR techniques have provedNMR measurements by carrying out simulations. More pre-

valuable tools for such investigation&)( One-dimensional

cisely, we calculate the results of 7Bl NMR spectra and of

(1D) *H NMR spectra are usually recorded to analyze mole2D *H NMR experiments in time domain. Such a systematic
ular reorientations with correlation times on the order of thavestigation is, to our knowledge, still missing for complex
inverse quadrupolar coupling constant, i.e., in the microsecomsblecular dynamics although such motions exist in a lot of

regime. On the other hand, applying two-dimensional (2D)
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fields, for example, as aforementioned, at the liquid to glas:
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transition. In order to calculate the relevant NMR observablasfew microseconds when applying a recently developed ac
in our study we carry out random walk (RW) simulations, sincgitional phase cycle2@). However, when studying dynamics
this technique has recently proved well suited to descrilo@ the microsecond time scale by 2D NMR one has to keep ii
complicated motions18-20, 22. We use dynamical models mind that molecular reorientations occur during the frequency
reflecting the actual molecular dynamics in supercooled liquidstection. As has been shown, this fact complicates the ana
and glasses to some extent. This choice is intended to allowyais of 2D °H NMR spectra 29, 3Q. On the other hand, the
easy comparison of the results obtained in the RW simulatioimformation content of 2D NMR experiments in time domain
and in our’H NMR experimentsZ1), respectively. However, under these circumstances has not yet been investigated in
we do not plan to describe the experimental findings quantitsy¢stematic manner. Therefore, we will here follow the questior
tively, but rather we will try to keep the models as simple asf whether the correlation functidn can be measured even for
possible in order to stress the general aspects. Another goat afn the order of microseconds using ZB NMR in time
this publication is to study the limits of the time windows’sf domain. As will become obvious, the results of this study are
NMR measurements. Such an analysis is not only of methatrongly influenced by the fact that, for experimental reasons
ical interest but also of practical importance when considerirgfour-pulse instead of the usual three-pulse sequence must
supercooled liquids, as will be demonstrated. We note thapplied in’H NMR (1).
although we solely deal witiH NMR, the results of our  As aforementioned, another intention of the present paper i
investigation are not limited to deuterons but can be transferredstudy the effects of complex molecular reorientations on the
to other nuclei with a dominating single particle interaction dmeshape of 1D°H NMR spectra. In particular, dynamical
well. models typical of the relaxations in supercooled liquids anc
According to our goal, we want to simulate molecular maglasses shall be considered. Consequently, when looking at tt
tions typical of reorientations in supercooled liquids and process, 1D NMR spectra for isotropic rotational jumps
glasses. Therefore, we have to summarize the main featurealodut various finite angles have to be calculated. Howevel
molecular dynamics in such samples at this point. It is wedluich simulations go beyond the above-mentioned prior efforts
known that the isotropic main relaxation in supercooled liquidsherefore, we will here demonstrate that 1D spectra in the
(a process) is strongly temperature depend@8) &nd char- presence of complex molecular dynamics can easily be calct
acterized by a distribution of correlation tim&Xlg7) (24). lated by carrying out RW simulations. These RW simulations
Moreover, 2D°H NMR experiments in time domairl{—2Q have been used in NMR so far only when evaluating results o
and other multidimensional NMR studieg5] have yielded 2D experiments in time domairi§-20.
valuable information about the mechanism of molecular reori- Having tackled these more general tasks concerning 1D an
entations involved in the process. It has turned out that ther@D *H NMR experiments, one can investigate in detail how
is a gradual loss of correlation which is achieved by marihese measurements are affected by various dynamical mode
elementary rotational jumps about various finite jump anglésove all, it is interesting to look at the meaning of the jump
taking place one after another. This means that the elementepyrelation timer; in the case of motions like the process
reorientations are characterized by a jump correlation imewhere the time scales afandr; are different. For the present
which is much shorter than the correlation timeOften, there investigation, it is useful to distinguish three cases:
is a secondary relaxation called Johari-Goldsi@&iprocess in
supercooled liquids and glasses, t@®)( This secondary re-
laxation survives even below the liquid to glass transition, i.e.,
at temperatures where tlheprocess is already frozen in. The
B process is mostly regarded as a highly restricted motion aHere, 5 represents the anisotropy parameter of the quadrupole
described by a very broad distribution of correlation timesteraction for deuterons, cf. Eg. [1], aid the time constant
(26, 2. of the spin—spin relaxation in the absence of motion, i.e.
Having in mind these observations in supercooled liquid®nsidering®H NMR the time constant of the decay caused by
and glasses, the problems to be tackled become obvious. Fitst, static dipole—dipole interaction. In supercooled liquids anc
whether the time windows of 2EH NMR experiments can be glasses;T% is typically on the order of several hundreds of
enlarged should be studied. Besides the methodical imparicroseconds. The first case, r; > T%, corresponds to the
tance, such an extension seems to be particularly useful fiynamical range for which usually the terms “ultraslow mo-
supercooled liquids due to the broad distributi@$gr) and tion” or “slow motion limit” are applied. Such motions can
the strong temperature dependence of molecular dynamiceasily be studied by 2D NMR1J. Case 3 is often called
these substances. Whereas the upper limit of the time windtinmtermediate motional regime.” This interval agrees with the
is determined by the spin—lattice relaxation and, thus, deperidae window of 1D NMR @). Here, we will mainly deal with
ing on sample and temperature fixed on the order of hundremses 2 and 3 because of their importance for supercoole
of milliseconds or some seconds, the lower boundary canliquids and glasses. In case 2, the correlation tinties right
principle be shifted by almost 3 decades from roughly 1 ms o the time window of 2D°’H NMR, whereas the jump core

e case lir, 1, > T%;
e case 2:it > T% > 155
e case 3T% > 7, 1, = 1/6.
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lation time is found in the one of 1EH NMR. Therefore, itis and the brackets . .) denote the ensemble average. If molec-
interesting to study whether motions where the time scaleswér dynamics during the pulse sequence can be neglasted,
7 and 7; are separated can simultaneously be observed in @il be constant and we can rewrite EqQ. [2] &,(t) =
and 2D NMR. We mention that such a scenario is reported f@os{wq(t — 2t,)}). Obviously, an echo appearstat 2t, and
the limit of isotropic rotational diffusion where the differencehe lineshape of the 1D spectrum, obtained by a Fourier trans
of both time scales tends to infinityL ). formation starting at the echo maximum, is independent of the
Finally, since theB process in glasses is believed to be applied echo delay,. In contrast, if molecular reorientations
highly restricted motion, it is necessary to investigate thake place during the pulse sequence a time-depenalgit
influence of such dynamics gkl NMR measurements, too. It results. Under these circumstances, a reduced amplitude of tl
is known that small angle fluctuations do not strongly affect 1Bcho and changes in the lineshape of the 1D spectra al
(9) and 2D @) *H NMR spectra recorded in the usual waybserved which depend both on the kind of motion and on th
using short echo delays. Here we show that, nevertheless, teefio delayt, (3—10.
can be observed both in the 1D spectral lineshape and 2D 2D *H NMR experiments in time domain can in principle be
NMR in time domain under certain circumstances. Moreovesarried out by applying a three-pulse sequence with prope
we extensively discuss unexpected effects appearing in #wperimental parameters. For example, using the Jeener—Bro
latter experiment if there is a very broad distribution of corréaert sequencem{ 2),~t ,—(m/4),—t—(w/4),~t,, it is possible
lation times for a highly restricted motion, as is typical of théo create a stimulated echo at a time= t, (31). Evaluating

B process. the amplitude of the stimulated echo for various mixing times
t > t, and considering ultraslow motions (case 1), a two-time
2. THEORY correlation function
Applying solid-state’H NMR the NMR frequency in the Ff,j“(t) = (s wo(0)tp]si wo(t)t,]) [4]

rotating framew,, depends on the orientation of the quadrupo

lar coupling tensor with respect to the external static magneficmeasured2). If the so-called evolution time, is set to a
field B,. Considering covalent C-D bonds, e.g., in deuterateghall value, i.e.wqt, < 1, the rotational correlation function
organic compounds, the quadrupolar coupling tensor is syBfthe second Legendre polynomfa(t) will be obtained. This

metric and its principat-axis points along the direction of thepecomes clear by expanding the sine functions in Eq. [4] ant
bond. In this case, the NMR frequency is given by taking into account Eq. [1],

wd80) = =2 G eoso -1 n=0, FE(0) o tX(wo(0)wg() * () (ogt,< D). [5]

Consequently, the correlation timelescribing the decay &f

where the anisotropy parametgiis typically 2 X 125 kHz S ac_c_e53|ble by 2BH NMR in time domain.'l—!owever, the
and 0 represents the angle betweBg and the C-D bond. conditionst, < T, andt < T,,, the _Iatter desc_rlblng the de(_:ay
Thus,w, and the orientation of the bond axis are connected V@4 quadrupolar order, must be fulfilled to avoid a loss of signal
the second Legendre polynomi&,(cos 6) and molecular due to relaxation. _
reorientations cause a variation of the NMR frequency. So far, we have supposed that the evolution tiean be
1D ?H NMR spectra can be recorded by applying the solid?-hos?” sufﬂmently_small and, thuk, can be measured by
echo pulse sequence. It consists of tw@ pulses which are @PPlying the described three-pulse sequence, cf. Eq. [5]. |
separated by an echo delayand shifted in phase byr/2. experimental practice, however, the stimulated echo disappea
Assuming perfect RF pulses and neglecting spin—spin reldR-the dead time of the receiver for such short evolution times

ation, the signaf measured at a time= 2t, in the solid-echo t,. Therefore, it is mandatory to insert an additional/ 2),
sequence is proportional t8)( pulse after the third one in order to refocus the stimulated ech

outside the dead timel(14, 15. Altogether, the following
four-pulse sequence must be appliedkhNMR (1, 14, 15:
S,(t) = (cod (0, t,) — [$(t, 2ty + d(2t, )]}),
2
g (7! 2) ~t,—(7l 4) —t—( 7wl 4) —A—( 7] 2) 5.
where the phases are calculated according to Still keeping the assumption of the slow motion limit, the
additional pulse does not affect the results and, hdpaoan be
t2 measured with the displayed four-pulse sequence. We emph
d(ty, tp) = | wg(t)dt [3] size that, because of the experimental necessiSHMMR, in
t all RW simulations throughout the present paper the four-puls
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sequence is taken into account. Only for a few times, which a@ecause of these effects it is not yet clear which informatior
explicity marked, is the three-pulse sequence simulated éan be extracted from 2D NMR experiments in time domain if
order to show effects arising due to the experimental applidaster dynamics is studied, as found in cases 2 and 3.
tion of the four-pulse sequence. Choosing different phases and pulse lengths in the describe
If one is not only interested in measurihgbut also wants four-pulse sequence, one can also record other correlatic
to obtain further geometrical information about a moleculdunctions (, 14, 15. For example, a correlation function
motion, it is useful to apply longer evolution timgsas well. which is equivalent to Eq. [6] except that the two sine functions
Geometrical information is obtained when varying the evolware replaced by cosine ones is measurable, too. In what fo
tion time becausg, can be used as a geometrical filter similalows, we will refer to these types as sin-sin and cos-co
to the momentum transfé& in quasielastic neutron scatteringcorrelation functions, respectively. We mention that, consider
(11). This meaning oft, becomes obvious upon inspectinging the latter correlation function, firdt, is not measured in the
once again, Eq. [4]. The longer the evolution titpés chosen limit t, — 0 and, second, the signal is dampedThyinstead of
the smaller the variation i, and, thus, the change in theT,, during the mixing time 1).
molecular orientation during the mixing timeneeds to be in
order to cause the_ same loss of correlatiqufﬁ(t) because 5 1 Random Walk Simulations
only the phase.t, is relevant for the experimental result. We
note that by measuriri@fpi”(t) for varioust, the meaning of the ~ The process of molecular reorientation is often treated in the
evolution time as geometrical filter was exploited to determirfeamework of the lvanov modeB@), i.e., it is assumed that the
the elementary jump angles involved in theprocess during orientation is constant between two rotational jumps of negli-
the past few yearsl{—20. gible duration. Applying such a description the molecular
Following our objective, we now drop the assumption adynamics may be regarded as a continuous time random wal
ultraslow motion and take into account molecular dynamichis is the basis of RW simulations because, under thes
during the evolution time, and the echo delay. This is circumstances, one can mimic the stochastic process of mole
mandatory as soon as the jump correlation timés on the ular dynamics using a random number generator. More pre
order of these two delays. Of course, there are stctor cisely, it is possible to create a large number of trajectories
correlation timesr in the microsecond regime (case 3) but wé&€)(t) describing the molecular orientation as a function of time
emphasize that they can be found even for correlation timeghin the scope of a certain dynamical model. Once thest
T > T% when looking at motions where the time scales ahd trajectories are known, the time dependence of the correspon
7; are separated (case 2). As mentioned abew®) the order ing NMR frequencies and, consequently, the results of mea
of microseconds recently got, in principle, accessible for 28urements can be calculated provided that the frequencies or
NMR because of an extended phase cycle which allows usdepend on the molecular orientatiob8). The latter require-
set the mixing time to values< T% (28). Applying this phase ment is met for théH NMR experiments which are discussed
cycle, shorter mixing times can be used since disturbing adtiere. All together, in order to calculate averages to be com
tional signal contributions, caused by single- and double-qugrared with NMR observables, RW simulations can be carriec
tum coherences which do not decay due to spin—spin relaxatmut instead of solving master equations, as has mostly bee
duringt < T%, are suppressed. Molecular reorientations durirdpne so farZ2, 33. As will be demonstrated, the technique of
the evolution timet, and the echo delay} can be taken into RW simulations turns out to be more flexible and easier tc
account if, from the time-dependeat(t) in analogy to Eg. handle in a lot of cases.
[2], the phasesp in this periods are calculated. Applying the In addition to the above-mentioned assumptions of the
above-displayed four-pulse sequence and evaluating the ebramov model, we suppose in all simulations that the probabil
amplitude as usual, the following correlation function is ohity for a rotational jump to occur is independent of the time

tained: which has gone by since the last jump has taken place. Th
latter precondition will be met in RW simulations if the waiting
() = (sif (0, t)Isin (1, t' + A) times between two jump events are chosen from an exponenti
distribution @4), cf. below. Moreover, it is here sufficient to
— o' + A U+t + 24)]). [6] calculate trajectoried (t) instead of Q(t) because axially

symmetric quadrupolar coupling tensors are considered, cf. E«
Here, the phases are defined according to Eq. [3] and= [1]. We add that, although all these assumptions are kept in th
t + t, is used. Obviously, instead of the frequenay, cf. Eq. present context, they can in principle be dropped in future
[4], different phasesp are now correlated. Moreover, theinvestigations if the technique of RW simulations is refined.
addition of the fourth pulse leads to an evident asymmetry of In the following, how the trajectories of the molecular ori-
both time dimensions which is not relevant for ultraslow maentation are simulated will be described in detail. In order to
tions (case 1). This asymmetry in time domain is reflected loyeate the trajectories, dynamical models are necessary. /
an asymmetry of the corresponding 2D NMR spec®® Q. mentioned above, we use models reflecting molecular dynan
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ics in supercooled liquids and glasses to some extent. In T, -
particular, we take into account the following examples: T o Sy [8]

e isotropic random jump;

e isotropic rotational jump about a constant elementatybecomes clear that the elementary jumps will take place ol
jump angley; a completely different time scale than the loss of correlation if

e random jump on a cone with an opening angje v is small. When simulating nonexponential relaxation, a het:

e rotational jump on a cone with an opening anglevolv- €rogeneous distribution of correlation tim&lgr) can be

ing a constant polar angl&y = 27/n wheren is a natural taken into account by using differemtfor the various trajec
number. tories but keeping; fixed during the course of one individual

0(t).
Whereas the prior two models shall represent the isotrapic  Having recorded the trajectori@gt) it is a straightforward
process, the latter two mimic threlaxation. In addition, the task to obtain the corresponding results of #HDNMR spectra
first model gains some interest when studying isotropic reolnd of 2D*H NMR experiments in time domain. First, the time
entations of guest molecules in a glassy mat%,(39. In all  dependence ab(t) is determined according to Eq. [1] where
cases, we consider exponential and nonexponential relaxatign: 2. x 125 kHz is used in all simulations. Afterward, the
respectively. Following Hinzel@), three steps are importantiime signals during the solid-echo sequence and the abovs
when creating trajectorie$ (t): (i) selection of a starting mentioned four-pulse sequences are calculated using Egs. [
orientation6, ensuring an isotropic distribution €2, as found gng [6], respectively. The phasésappearing in these equa-
in supercooled liquids, (i) random choice of a waiting timgons, cf. Eq. [3], are evaluated as sum over the different phas
from an exponential distribution characterized by the jumghifts which are achieved during the various periods of con:
correlation time’Tj, and (|||) calculation of the new Orientationstant frequency1 i_e_, during the Wamng times. Fina”y, calcu-
after the jump. After step (i), steps (i) and (iii) are alternatelating results of 2D experiments, the amplitude of the stimu-
repeated until a trajectory of sufficient length is recorded whegged echo for various mixing timesis evaluated as it is in a
the length is determined by the duration of a single-shot exal measurement. On the other hand, the 1D spectra a
periment. obtained after a FT of the time signal during the solid-echc
The geometry of the above-listed dynamical model COME8quence starting at= 2t,.
into play in step (iii). When simulating an isotropic random s far, we assumed ideal experimental conditions. Howeve
jump, according to the definition of this kind of motion, theseyeral additional effects appear in real experiments which
new orientation after a jump is always chosen randomly as itiigerefore, must be regarded at this point. Calculating 1D spec
in step (i). Assuming an isotropig® jump, the orientatio;., tra, first, one has to take into account the line broadening du
after the jump can be calculated from the one befpresing to static dipole—dipole interaction. This is done in the RW
(19 simulations by damping the time signal with a gaussian func.
tion before carrying out the FT. Further, the finite pulse lengths
0., = arcco§sin 6;sin y cosy + cos@,cosy], [7] inareal measurement have to be considered. Following Bloor
et al. (38), this is achieved by multiplying the obtained spectra

wheres is taken from the interval [0, 2] with equal proba- W'.t h a funcjuqn Awq) which describes the excitation effect
arising for finite pulse lengths,

bility. In the case of reorientations on a cone with opening
angley, the orientation of the cone axfi is chosen by chance

at the beginning of each trajectory, ensuring an isotropic dis- Sif](AprwS + 303
tribution of all axes. Afterward, the starting orientation as well Alwg) = wph, S [0l
as all other positions throughout a trajectory are calculated ApV“’P tiawg

according to Eq. [7] with fixed; = 6, andy = x/2. Depending
on the modely) is either selected randomly from the intervaln this equationA, is length of a {/2)-pulse andv, represents
[0, 27 or varied byAys each time. the angular velocity of the rotation imposed on the magneti-
The time scale of the dynamics within one of these modetation by this pulse. In all simulations, the various parameter
is adjustable by the choice of the jump correlation time describing damping and excitation effect are kept fixed. They
When investigating random jumps the correlation tin@gjuals are chosen in such a way that 1D spectra similar to experimer
the jump correlation timer; because the maximal loss oftal ones result as will be described in detail elsewh2ig For
correlation is achieved with each reorientation. On the othexample A, = 3.8 us is used in all simulations. Since dipole—
hand, in the case of an isotropi€¢ jump, several elementary dipole interaction and finite excitation bandwidth of the pulse
rotational jumps are necessary to destroy the correlation. Thimdiation are expected to have little influence on2DNMR
leads to the above-mentioned separation of the time scales ekperiments in time domain for the chosen dynamical models
and 7; which is quantified by the expressio87) both effects are neglected when calculating sin—sin and cos
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cos correlation functions, respectively. Furthermore, we do not TePP
take into account molecular dynamics during the RF pulses in (T8 = B I(1/By,), [11]
any of our RW simulations. °

wherel” denotes the gamma function.
3. RESULTS AND DISCUSSION When intending to mimic a real measurement of the corre:
lation functionf, we have to use a short evolution tirmen the
In what follows, we present the results of various RVRw simulations, cf. Eq. [5]. Here, we apply= 3 us through
simulations. We begin by discussing the findings for 2D out the paper where this particular value is motivated by the
NMR in time domain and will later describe the observationspservation that shorter effective evolution times are hardly

for 1D “H NMR spectra. accessible in real 2BH NMR experiments. This comes about
due to both the finite pulse lengthkd and the decrease of the
3.1. 2D NMR in Time Domain signal amplitude ¢t?) for t, — 0, cf. Eq. [5]. For the echo

) ) ) o delay in the four-pulse sequence, we apply a typical experi
As aforementioned, dealing with 284 NMR in time do  mental valueA = 15 us. Finally, we add that we will skip the
main we mainly address three questions. First, we investigﬂ;gextp when considering,, i.e., if according to our proceed
whether it is possible to measure the correlation funcfion ing sin—sin correlation functions with = 3 s are simulated.
even for correlation times < T%, i.e., for 7 on the order of

microseconds. Then, we study how 2D NMR experiments 3.1.1. Isotropic dynamics: Exponential relaxationJsing

. . . . . garious dynamical models we now want to analyze whethe
time domain are affected by highly restricted motions an . . . .
Ohe can measut for 7in the microsecond regime. First, we

finally, we look at the influence of very broad distributions;

: imulate an isotropic random jump assuming exponential re
G(lgr). However, before tackling these problems we woul . rop Jump g &xpo
. . . axation. According to our goal, we study the sin—sin correla-
like to insert some comments on the proceeding.

. . S tion functions ¢, = 3 us) for various jump correlation times
In order to parametrize the simulated sin—sin and cos—cQs . . -

. Lo . : o covering the range from some microseconds to the millisecon
correlation functionsi(= sin, cos), a suitably modified Kohl-

- : regime. Strictly speaking, the amplitude of the stimulated ech
rausch-Williams-Watts (KWW) functior8@, 49 after the four-pulse sequencA & 15 us) is calculated for

various mixing timeg using Eq. [6]. The results together with
. , By . fits obtained by applying Eq. [10]8;, = 1) are displayed in
Fio) = (1 - C{p)exr< _(Tapp> ) + Ch, [10] Fig. 1a. Looking at the fit paramete?™, which is expected to
° represent the correlation timemeasured in an experiment, it
becomes evident that, for all jump correlation times used in the
is fitted to the data as is usually done when analyzing mesimulation,r; = 7™ holds within an error of about 1%. This
surements in supercooled liquids7f2Q. This function allows error is caused by the noise in the RW simulation due the finite
us to characterize the time scalg” and the stretchin@,, for number of trajectoriesN = 50,000). Thegood agreement of
exponential and nonexponential decays, respectively. The i and 7 is, on the one hand, a consequence of the randor
dext, is used in Eq. [10] since the measured decay dependsjomp mechanism because, in this case, the correlation time
the applied evolution time, cf. Eq. [6]. The superscript “appéquals the jump correlation time and, on the other hand, this
shall indicate that the time constarff” is the correlation time finding demonstrates that even for dynamics on the time scal
which one would apparently measure in a real experimenit about 10 us correct correlation times can be measured
provided that there is the same kind of dynamics as in théthin the scope of the applied model.
simulation. Furthermore, introducing a rest correlat@ip an However, the amplitude of the measurable signal, i.e., the
incomplete loss of correlation, e.g., in the case of restrictstnal fort < r, declines when leaving the slow motion limit
dynamics, can be taken into account. Assuming the slow mand considering faster dynamics. This decrease is caused |
tion limit an evaluation of the rest correlati@ip as a function molecular dynamics taking place during the evolution time
of the evolution time reveals information of the geometry aind the echo delag. In a RW simulation, the dependence of
the considered molecular dynamickl). We note in passing the measurable signal on the correlation time can be chara
that the KWW function is solely used as a fitting function in théerized by the reduction factopr?A(T). In analogy to the
present context but is not thought to have any physical meamell-known reduction factor of 1D NMR, we define this quan-
ing. Fitting an exponential decay with Eq. [18],, of course, tity in the present context as the amplitude of the stimulatec
equals 1 and-” directly represents the time constant of thecho resulting fot = 0 and a certairr divided by the height
loss of correlation. In contrast, assuming a distribu(fgr), for  — . Of course, the same number of trajectories must be
the resulting nonexponential decay leads g,a< 1. Then, the accumulated for allr. The reduction factoR3347) for the
apparently measured mean correlation time can be calculaisatropic random jump is displayed in Fig. 1b. For comparison
according to 17), we have also included the reduction factor for= 100 us and
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FIG. 1. RW simulations for the models of an isotropic random jump and an isotropic 15° jump: (a) sin—sin correlation functions; solid symbols: isoti
random jump (four-pulse sequendg:= 3 us, A = 15 us), open symbols: isotropic 15° jump (four-pulse sequehce: 3 us, A = 15 us), crosses: isotropic
random jump (three-pulse sequente= 3 us, 7, = 10 us), dotted and dashed lines: fits using Eq. [10], inset: jump correlation tirfesthe random jump;

(b) reduction factors of the stimulated echo for the model of an isotropic random jafjmr) (four-pulse sequence; = 3 us andA = 15 us, 100us) and
analogous defined reduction factor for the three-pulse sequénee3 us).

for the three-pulse sequencg, & 3 us) assuming the sameA in the four-pulse sequence or by calculating the correlatior
kind of motion. It is evident that the amplitude of the signaiunction f, after the three-pulse sequence which cannot be
strongly decreases with decliningin all cases. However, a measured. The latter is included in Fig. 1a as well. Obviously
dependence of the reduction factor on the applied pulse delaging =+ = 10 us, the increase otl_fpi” disappears for the
becomes obvious as well. Considering the four-pulse sequetioeee-pulse sequence. The growthGgf for 7 ~ A is plausible
the echo amplitude starts to decreaserat 10A, whereas since such kind of dynamics leads to an exchange in thi
looking at the three-pulse sequence an inset of the declindrisquency during the period and, thus, to an “average” over
visible atT ~ 10t,. Finally, forr < A andt < t,, respectively, a few wq(t) when calculating the phase of the second sine
a signal is hardly measurable any longer. These findings defmAction in Eq. [6]. Therefore, with respect to a certaig(0),
onstrate that the longest delay of the applied pulse sequettte maximal loss of correlation cannot be reached. Thes
determines the reduction factor which, of course, is a plausililedings demonstrate that the enhanced final state value
result. Therefore, having in mind that in real experiments thqS;”(t) arising forr =~ A is an artifact caused by the experi
four-pulse sequence with an echo delay= 15 us is applied, mental application of the four-pulse sequence.
correlation times shorter tham ~ 10 ws, say, cannot be Very similar observations are found if an exponential relax-
determined by applying 2BH NMR and even forr < 1 ms, ation caused by an isotropic 15° jump is simulated. In partic-
the number of scans carried out in the experiment has to War, over the whole range of correlation times> 10 us,
increased in order to obtain a sufficiently large signal-to-noiserrect time constants can be measured for this motion as wel
ratio. We already note that these observations will gain sorais is again demonstrated in Fig. 1a where the open symbol
importance if a distribution of correlation timeS(lgr) is mark the RW simulations for the isotropic 15° jump and the
present. Further, we add that a similar behavior of the reductidashed lines mark the corresponding fits to Eq. [10]. Usinc
factor is found recording 103( 5, 7 and 2D*H NMR spectra jump correlation timesr;, = 3 us andr, = 100 us in the
(29, 30. This is reasonable because, in these experiments, eshulation, respectively, correlation time&” = 30 us and
techniques are used as well. 7™ = 1 ms are obtained from the fits. Hence, in both case:
Inspecting once again Fig. 1a, still another effect is visible®™ = 107, holds as is expected according to Eqg. [8] and, thus
The final state value c_Fffpi”(t) fort> 7, which is characterized a proper time constant is available. However, considering th
by the fit paramete€;", cf. Eq. [10], does not only depend onl5° jump the increase dof;" for 7 ~ A is even more pro
t,, as found for ultraslow motion, but also enReferring to the nounced than in the case of the random jump. This is clearl
decay curves in Fig. 1a, this parameter increases from abseaen when comparing the decays correspondinf'te= 30 us
1% in the slow motion limit, which is in accordance with thdor both models in Fig. 1a. The observation is understood if one
theoretical value for an isotropic motiofi), to about 9% for takes into account that for the 15° jump, due to the shatter
7= 10 us. The increased value @‘f;” for shortT again arises more reorientations take place during the perdod
because of motion during the various dephasing and refocusingVe add that the described effects were also observed in &
periods in the experiment. When simulatihgthe enhanced experimental investigation of an anisotropic motion. Studying
value mainly comes up because of dynamics during the edhe sixfold jump of the molecules in crystalline hexamethyl-
delayA > t,. This can be shown in the simulation by reducingenzene correct correlation times in the microsecond regim
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could be measured by applying 2Bl NMR in time domain

(21, 41). Moreover, when looking at < T% a larger value of 101 . ::O/ me
o was found than in the slow motion limit. 0] o 10
We conclude that it is possible to extract correlation times 10 ' e 3

pus= 1 = T,, from 2D *H NMR experiments in time domain 064 __ N 103

if exponential relaxation is considered which involves isotropic g sin . & o4

motions or anisotropic large angle reorientations, respectively. % | 1 ® [ e 003

Consequently, the time window of this 2D experiment can be ALY i 88(‘)3

enlarged by approximately 2 decades when looking at such 0.2 e .D-g '--‘_ :

dynamics and applying an extended phase cy28&. (How- X0t el A .__(';9,."3.;5._._
ever, care must be taken if the rest correlaifi is evaluated 0.0 : —RAogbragateoBeany,

to analyze the geometry of a motion characterized by a corre- 10 100 1000 10000

lation timer =~ A.

; e : : FIG. 2. RW simulations for the model of an isotropic random jum
3.1.2. ISOtI’C_)pIC d)_/na_mlc_s. Nonexpor_lentl_al I’(alaxatlona'ssuming a logarithmic gaussian distributiéfigr) (o = O.8p), cf. Eq. [12J]: P
Now, we consider a distribution of correlation tim@ggr). In sin—sin correlation functions for various mean logarithmic correlation times
this case, the resulting nonexponential correlation fundtjon ig:" (four-pulse sequence; = 3 us, A = 15 us). Dotted lines: fits using Eq.
can be measured by applying 2D NMR in time domain if for a[lLo].
7 out of this distribution the slow motion limit holds (case 1).
Here, we check whether this is still true when parts of the

distribution enter the regime < T"; We assume a heteroge horizontal line will be eXpeCted if the measured mean time

y
t/ms

neous logarithmic Gaussian distribution constant ) varies according to the shift of the distribution
G(lg7). Indeed, such a behavior is found for ultraslow motion.
1 (Igr — Igr™? Howev_er_, ifG(lgT) co_ntainsT < T%, this is no longer true and
G(lgr) = — 5 exp< - 22) . [12] the ratio increases, i.e., the apparently measured time constz
Wiy g (™" is too long. We mention in passing that even in the slow

motion limit (v** should not equat™ because different aver

Using such aG(lgr) the mean logarithmic correlation timeages are regarded. Concernifg an increase from 0.54 to
(lgt) equals the maximum of the distribution7ltyand the 0.79 is visible in Fig. 3b, indicating the less nonexponential
decadic full width at half maximum of5(lg7) is given by loss for smallr™.
20'V21In 2. In all RW simulations concerning nonexponential Both observations can be explained, remembering that mag
isotropic dynamics, we choose = 0.8 corresponding to a netization of molecules with correlation times< T% is not
distribution with a half width of about 1.9 decades, which isompletely refocused in the four-pulse sequence, cf. Fig. 1k
typical of thea process in supercooled liquids. This finding means that only as long @lgr) solely contains

First, we study an isotropic random jump in the presence ofin the slow motion limit, all parts of the distribution uni-
such a distributiorG(lgr). Following our objective we calcu- formly contribute to the experimental result. However, this is
late sin—sin correlation functions varyingrlg The results, no longer valid when parts d&(lg7) enter the microsecond
using agairt, = 3 us andA = 15 us, are compiled in Fig. 2. regime. Then, shortercontribute less to the echo, as is seen in
Although only a poor interpolation is reached, the data atee declining reduction factoR334™), cf. Fig. 3c. Conse
fitted to Eq. [10] in order to characterize time scale anguently, the findings are no longer determined by the rea
stretching of the decays as was done in prior wdrk-20Q. distribution G(lgr) but by an effective distributiorG*(lg 7)
The systematic deviations occur because, on the one hanayhéch is obtained by a multiplication a&(lgr) with the re-
logarithmic Gaussian distributioG(lg7) is used in the simu- duction factorR33{7), cf. Fig. 1b, since the latter quantity
lation and, on the other, a fit to a KWW function is applieddescribes the reduced signal contribution for shortThe
Nevertheless, we want to disregard these problems becauselistributionG*(Ig ) is the narrower the smallef’ because the
quantitative results are to be obtained but only trends shall pertion which is cut off byR3{7) becomes larger and larger
shown. Inspecting Fig. 2, two effects are obvious whetl ig when reducingr™. Hence, a less nonexponential correlation
decreased with constant increment: First, the sin—sin correfanction and an increase @, with decreasingr™ result in
tion functions become less nonexponential and, second, tlagreement with the observations. Moreover, since the “fas
are less shifted to smaller values for small part” of the real distribution contributes ©*(Igt) only in a

These effects can be quantified displaying both the fit peeduced manner, correlation timesn the slow motion limit
rameterB, and the mean time constant™), which is obtained are overestimated in the measured averag€) and, thus,
from 7 and B, according to Eq. [11], as a function ef in  (r**) is longer than one would expect considering the real
Fig. 3. Strictly speaking, in the latter case, the dependencedistributionG(lgr). As a consequence, the raig™)/" grows
the ratio(r*"/7™ on 7™ is shown in Fig. 3a. For the ratio, awith declinings™. We add that all these effects also appear if
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FIG. 3. Parameters obtained from fitting the data in Fig. 2 to Eq. [10]: (a) R&fi®/r"™; (b) stretching parametet,; and (c) reduction factoR, (™).

an isotropic rotational jump involving a constant jump angle reflected by the fit parameteZ;* strongly depends on the
is studied as has been checked by carrying out some simwdaelution time. Almost no loss of correlation can be observec
tions for that model. for t, = 5 us whereas a distinct decay appears for largel
Summarizing, it has turned out that the correlation functicgvolution times. Especially, in the rangeus < t, < 55 us,
f, is not correctly measured by applying ZB NMR in time C.,”° clearly decreases with an extension of the evolution time
domain if there is a distributio®(Ig) which containsrin the Finally, if one appliest, > 55 us the cos—cos correlation
microsecond regime. In this case, the different parts of tlfienctions are less affected by a similar variation of this delay.
distribution do not contribute uniformly to the signal and to&Ve note that the observed dependence of the rest correlatic
long time constant$r™™ are obtained. C.® on t, is completely different from the one found for
3.1.3. Restricted dynamics: Exponential relaxatioilext, isotropic dynamicsX1). However, a qualitatively similar de-
we turn to highly restricted dynamics. As mentioned aboveendence of the rest correlation opwas reported for the
these investigations are relevant for a forthcoming analysis ®del of rotational diffusion on a cone with = 60° when
experimental results on th@ process in supercooled liquidsconsidering sin—sin correlation functions3(. Quantitatively,
and glasses2(l). In what follows, we try to make such re-of course, much smaller absolute values of the rest correlatio
stricted motions visible by applying 2BH NMR in time Were found for a cone with opening angfe= 60° than for the
domain. For that purpose, we simulate cos—cos correlatiBfe Withx = 6° in the present context. Furthermore, we add
functions assuming reorientations on a cone. The cos—dbat we have also calculated the correlation functiome., the
instead of the sin—sin correlation functions are now calculatgih—sin correlation function far, = 3 us, using the model of
since, for experimental reasons concerning spin—lattice rel@<tandom jump on a cone with an opening angleyof 6°.
ation during the mixing time1(9, 21), they were considered in Like the cos—cos correlation function for a short evolution time
our study of the3 process. The opening angle of the cone is skt = 5 ps in Fig. 4,f, exhibits no discernible loss. Therefore,
to y = 6° in all RW simulations where this particular value is

motivated by our e>_<per|mental fmo_lm@](, 42. Moreover, the 1.0 500 T CO OB E P N e
model of reorientations on a cone is chosen because, on the one %:_‘3_;n._ﬂ*'+»+»+-++-+-+
hand, it is more flexible than a two-site jump, for example, 08 *‘; '
various jump angledys on the cone can be implemented and, J | ™ t-= 5w
on the other, it is still easy to simulate. oed | T bT10ws

First, we calculate cos—cos correlation functiods= 15 7 oo f :i;g :‘z
ws) for the model of a random jump on the cone where the Y ogad | o t:=32 s
jump correlation timer; amounts to 10 ms. This means we 1] e t=-dous
study ultraslow motion to circumvent the above-discussed aod | ¥ 4=55us | . _4oms
problems arising in the presence of faster dynamics for the ° t=82us
moment. The data for various evolution timggogether with Y
fits according to Eq. [10]&,, = 1) are compiled in Fig. 4t is 1E-3 0.01 0.1 1 10 100 1000
obvious that, independent df, the time constants of the t/ms

: app . . .
different decays,” well agree with the jump correlation time FIG. 4. RW simulations for the model of a random jump on a cope=(

7 = 10 ms as is expected for a random jump. On the othg#: cos—cos correlation functions for= 10 ms and various evolution times
hand, the amount of correlation remaining for 7; which is t, (four pulse sequencex = 15 us). Dotted lines: fits using Eq. [10].
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3.1.4. Restricted dynamics: Nonexponential relaxation.

104 m § gt . _ L ) .
* 'ﬂigigéfff*ﬂfgf;*- :.*__‘ Finally, we introduce a distributio&(lg7) for highly restricted
Ahi.,.;-,._‘,_;w,,, " motions, too. In particular, we deal with very broad distribu-
0.8 T/ ms ’:AQ‘».O W tions typical of theB process in supercooled liquids and
- ; 1?8 5 . glass_es. A_s will be shown, Wh_en _shlftmg supﬁ@gf) t_hrough
t . ] Foangasnd the time window of 2D NMR in time domain peculiar results
0.6 o Ay appear in the RW simulations which are similar to experimen:
0.3 AAAALAL [ ] . .
A 01 o - o tal findings to be presented elsewhe?é)(
i gg; '%'@20 e B Once again, we consider a random jump on the cone. Now
0491 7 ooor | o=82ps T STTAEES however, we assume a very broad logarithmic Gaussian distr
bution G(Igr) characterized byr = 2.3, cf. Eq. [12]. In this

1B 001 01 1 10 100 1000 case, the corresponding full width at half maximum of 5.4
t/ms decades represents a typical value for distributions describin
FIG. 5. RW simulations for the model of a random jump on a cope=( the 8 process near the liquid to glass transiti@i)( According
6°): cos—cos correlation f_unctio_ns for_diﬁerem(four—pulse sequenc& =15 {5 the experimental procedure where various temperatures a
us, tp = 32 ps). Dotted lines: fits using Eq. [10]. considered, we simulate cos—cos correlation functions varyin
Igr™ and keeping, = 32 us fixed. As has been demonstrated
in experimental practice, it is very difficult to determine thdor exponential relaxation, such large evolution times are nec
correlation timesr of highly restricted reorientations in gen-essary to obtain a discernible decay of the correlation func
eral. tions, cf. Fig. 4. Again, the four-pulse sequence with an echc
The dependence @:° on the evolution time, displayed indelay A set to 15us is taken into account. The results are
Fig. 4, is understood if the filter effect df, is taken into shown in Fig. 6, however, the displayed data are furthel
account, cf. Eq. [4]. Investigating highly restricted motiondamped by an exponential decay with a time constant equal
only small changes in frequency, typicallys,, say, can occur 1 s. This additional damping is introduced in order to reflect
during the mixing time. If short, are chosen, these changes dapproximately the experimental situation where the amplitude
not cause a detectable loss of correlation because the phadéke stimulated echo is reduced by spin—lattice relaxation an
before and after the mixing time differ only a little Bywt, < by spin diffusion for long mixing times. As will become clear
1. However, increasing, leads to larger differences in thebelow, the additional damping is necessary to allow a demon
phases even for such smalv, and, therefore, a significantstration of effects appearing in experiments for very broac
decay of the correlation functions can be observed. distributionsG(Ig7). Because of our proceeding, the resulting
Now, we look at what happens when the slow motion limilata in Fig. 6 show two decays: first, a strongly stretched sho
is left but sufficiently large, are applied in order to make thetime decay caused by the loss of orientational correlation du
loss of correlation visible. Therefore, we calculate cos—ctsthe considered motion and, second, an exponential long tim
correlation functions for a constant= 32 us but differentr;, decay because of the applied damping. Inspecting the sho
applying once again the model of a random jump on the cone.

The results and the fits according to Eq. [1(@, (= 1) are

compiled in Fig. 5. It turns out that, for afjf = 30 us, the fits 1.0 """‘@&Qi@&g..l

yield time constants,” which are in good agreement with the i éégﬁé‘;..

jump correlation time. However, in comparison with the results 084 Eﬂugﬂ;\;
obtained for an isotropic random jump and a evolution time ' "/ ms “}Eﬁrg_&u
t, = 3 us, cf. Fig. la, the dependence of the rest correlation F° 1 = 1000 “"\%m"ﬁ\

&, ontis much stronger. Above all, reducingfrom 300 to " 064 e 100 “i\‘g\
30 us leads to a strong increase@f”. For even shortet;, no A 1 Es
decay is visible any longer. These observations are plausible o 0d i\
having in mind that, during the necessarily longer evolution 0.4 1 o 0.01 'QE
time t, for restricted motions, the effects of molecular dynam e
ics in this period are amplified. We note that the described 0.01 0.1 1 10 100
findings gain some relevance if a distributiG(lgr) is present t/ms

as discussed below.
All together, highly restricted dynamics can clearly be ob- FIG. 6. RW simulations for the model of a random jump on a cogpe~(
served in 2D NMR experiments in time domain if Iarge evob:o) assuming a very broad logarithmic gaussian distribuB@igr) (o = 2.3),

uti i t lied. H ideri h . Eq. [12]: cos—cos correlation functions for different mean logarithmic
ution timest, are applied. However, considering such smally o aton times lg™ (four-pulse sequenceék = 15 us, t, = 30 us). Dotted

angle fluctuations it is difficult to determine the correlatiofines: fits described in the text. The calculated data are damped by an expt
time 7 in general. nential decay with a time constant of 1 s.
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time decay, a peculiar behavior becomes evident. Althatlgh

is varied by 5 orders of magnitude no clear shift of the 0.35 1 CTTTTN

correlation function is visible. This is seen, for example, com- ] L N

paring the data for™ = 100 ms and™ = 10 us, respectively. , N

Furthermore, the amount of correlation that is lost until the = 0.307

long time decay becomes effective at= 100 ms exhibits a 3 - ] )/ \

maximum using’™ = 1 ms. For both shorter and long€et the & ,/ I

observable loss of correlation is less pronounced. — 0.254 , =

These qualitative observations can be quantified by fitting oy \

the data to a KWW function, cf. Eq. [10], multiplied with an

additional exponential decay. The time constant of this expo- 0.20 —rrrmr
) . . o . 0.01 0.1 1 10 100 1000

nential decayl 4, although known in the simulation, is varied m

in the fitting procedure, too, in order to mimic the experimental T /ms

situation. Nevertheless, for all curveB,,, =~ 1 s is obtained  FIG. 7. Parameter (1~ C{) obtained from fitting the data in Fig. 7.

from the fits in accordance with the used damping. ConcerniRgtted line: value of the integral in Eq. [13] for variousrTy

the stretching parameter of the short time defay indepen

dent of ", small values of 0.34t 0.01 are found due to the

broad distributionG(lgr). The time constant of this decay'™ ( “ Jlg 100 ms
1-C39) =
|

is reduced from about 35 ms fef' = 1 s to about 1.3 ms for G(lgr)digr. (13]
7" = 10 ws. Thus, as already expected, a decrease' dfy 5
orders of magnitude causes only a variatiorr{ff by a factor
of 30. Therefore, applying 2D NMR in time domain andlhe values of this integral for severdl and the fit parameters
considering such broa@(lg) it is impossible to extract cor- (1 — Cg”) are shown in Fig. 7respectively. As expected, a
rect correlation times. Instead, the measured time constan@f9d agreement is evident. In particular, both curves exhibit

fixed by the time window of the experiment and, hence, on tffg@imum atr™ ~ 1 ms which has been anticipated in the first
order of a few milliseconds. inspection of the data as well. Slight differences occur due t

Nevertheless, information about the position of a brodfj€ rough estimation of th(_a integratign limits. These fi_ndings
G(lgr) is available evaluating (- C&) as will now be emonstrate that the quantity (1 C) is not only determined

demonstrated. For that purpose, we look at the amountbc}fthe geometry of a motiorig), but also correlated with the

. ) . . : : number of molecules relaxing in the time window of 2D NMR
correlation that is lost in the time window of 2D experiments " . . . ) .
when investigating such a distribution. On the one hand fittir'un time domain. Therefore, if the shape Gflgr) is approxi-

gating ) ' rﬁately known a determination of (+ C;”) as a function of

thceo data the amount of I(.)st Is expected to be reflected by (]Temperature allows us to estimate the mean correlation time b
C.,), on the other hand, it is supposed to depend on the num@ﬁFrying out 2D NMR experiments.

of molecules relaxing, i.e., on the part of the broad distribution ;o< turned out that it is impossible to measure the meal

G(lg7) located in the experimental time window. Therefore,,re|ation time directly by applying 2D NMR in time domain
comparing both quantities as a functioméfperhaps a similar ¢ an extremely broad distributioB(Igr) is present. However,
behavior should be found. If this were true a determination @(/aluating (1- C™) yields at least a clue to the position of
(1 = C{), using experimental data, indeed, would yiel&(lg7). This result, explicitly demonstrated for highly re-
information about an unknown distribution. In order to checktricted motions, is expected to hold generally for distributions
our speculations, we have to estimate the time window of opfoader than the experimental time window. Such broad dis
particular 2D experiment first. Toward long it is limited by tributions appear, e.g., when investigating tBeprocess in
the long time decay imitating spin—lattice relaxation. Thisupercooled liquidsX?) or the reorientation of guest molecules
decrease starts to dominate the decline of the stimulated eahglasses 35, 36.

att ~ 100 ms, cf. Fig. 6. The lower boundary is about 130

Using an evolution timé, = 32 us this approximation seems3-2- 1D NMR Spectra

to be reasonable because forx 100 us; first, there is only @ | the remaining part of this paper, we carry out RW sim-
slight decay of the correlation functions, cf. Fig. 5, and, seconglations to calculate 1BH NMR spectra for different dynam
the contribution of such to the measured signal is smaller dugcal models. In all simulations, the solid-echo pulse sequenc
to the incomplete refocusing of the corresponding magnetizgith an echo delay, is considered. Again, isotropic as well as
tion, cf. also Fig. 1b. All together, the loss of correlatiomighly restricted motions are taken into account but, here
detected in the 2D experiment should be connected with tBgponential relaxation is solely discussed. In particular, com
integral plex molecular dynamics characterized by two different time

g 100pus
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-1'00‘ 6 ' 160
v/ kHz

FIG. 8. RW simulations for the model of an isotropic 3° jump=< 100
ms, 7, = 411 ps): 1D *H NMR spectra for different echo delays in the
solid-echo sequence. Dotted line: 131 NMR spectrum for an isotropic
random jump £ = 7; = 100 ms) and an echo delay = 200 us.

which are similar to those for the isotropic 3° jump displayed
in Fig. 8.

If the 1D lineshape for large, is affected by molecular
dynamics one will expect a dependence on the correlation time
This can be checked by calculating 1D spectra for varions
T% and a fixed echo delay, = 100 us. The spectra obtained
for the model of an isotropic 3° jump are shown in Fig. 9.
Indeed, a distinct dependence of the lineshape isrobvious.
Looking at a correlation timefd s aspectrum typical of rigid
molecules is observed. Of course, this is reasonable since tt
corresponding; amounts to about 4.1 ms and, thus, molecular
dynamics during the pulse sequence is negligible. In othe
words, case 1 is valid for this correlation time. On the other
hand, inspecting the spectra for correlation times in the milli-
second regime changes in the lineshape are found which are t
more pronounced the smaller They are brought about by
elementary jumps which occur during the pulse sequence whe
considering such for an isotropic 3° jump. For these pairs
and T, case 2 is met. These findings demonstrate that the 11
spectra shown are indeed influenced by molecular dynamic
althoughr > T% is valid.

Summarizing, two prerequisites have to be fulfilled in order

constantsr; < T3 andT > T3 is investigated, i.e., case 2 isto obtain lineshape changes for> T%. First, the conditionr,
regarded. As mentioned above, we mainly follow the questian T% (case 2) must hold. Concerning the mechanism of
of whether such dynamics, which is usually analyzed by ageorientation, this means that the loss of correlation has to b
plying multidimensional NMR techniques, can simultaneouslychieved gradually by many elementary small angle jump:
be studied by recording 1D spectra. If this were true, addition@lking place one after another. Second, it is essential to appl
information about the motion would be available since ar]ﬁrge echo de|ay3p. The |ong echo de|ays are necessary
dynamical model has to reproduce the results of 1D and Zacause considering > T% at most a few elementary small

NMR experiments at the same time.

3.2.1. Isotropic dynamics: Exponential relaxationn or-
der to obtain well-separated time constafts< T% < 7 we

angle jumps occur during the solid-echo sequence and, henc
the NMR frequencyw,, is shifted just a little. The connection

now consider an isotropic 3° jump. Using this model the jump

correlation timer; is by a factor of about 240 shorter than the
correlation timer, cf. Eq. [8]. We calculate solid-echo spectra

varying both r and the echo delay,. First, we keep the
correlation time fixed at a value= 100 ms, i.e., right in the

time window of 2D NMR, and simulate the spectra for differ-

ent echo delays. The results are compiled in Fig. 8. Clearly, the
lineshape of the spectra changes,ifs extended although a

> T% is chosen. On the other hand, such changes do not
appear, simulating an isotropic random jump with the same
correlation timer = 100 ms as a reference. This is evident
inspecting the 1D spectrum found for that kind of motion and
t, = 200 us displayed in Fig. 8, too. The differences between
both models can be understood comparing the jump correlation
timest,. Whereasr; equalsr for the isotropic random jump, a
much smallerr; = 411 us corresponds to the used correlation
time for the isotropic 3° jump. Therefore, in contrast to the
random jump, considering the latter model molecular dynamics
takes place during the solid-echo pulse sequence which can

tp=100 us
T T
411 us 10 ms
123 us 30 ms
411 us 100 ms
4110 ps 1000 ms

T T T T T T T T T
200 -100 0 100 200
v/ kHz

lead to effects in the 1D spectra. We note that, applying 1arg&-5 ¢ rw simulations for the model of an isotropic 3°

t, and looking at an isotropic 15° jump characterizedrby 1

jump: 8
NMR spectra for various correlation times(solid-echo sequence, = 100

ms andr; = 100 us, changes in the lineshape are observed).
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to distinguish from diagonal intensityl), Here, we want to
investigate how highly restricted motions affect IB NMR
spectra. According to our goal we once again simulate reori
entations on a cone with an opening angle 6° as was done

when considering 2D NMR in time domain.

First, we calculate 1D spectra assuming a random jump o

this cone. Again, both and the echo delaty, are varied in the
b simulations. We start keeping the jump correlation time fixed.

20 us The spectra for; = 7 = 30 us and various, are shown in Fig.

50 us 10. If the echo delay is set to 20s a spectrum is found in
100 s which no effects of the considered motion can be recognizec

j t althought is chosen right in the time window of 1D NMR.
This indicates that highly restricted dynamics cannot be ob
. ' _ served in 1D spectra recorded in the ordinary way using sma

-100 0 100 echo delays, as is well known from other investigatiod)s (
v/ kHz However, applying larger echo delays, changes in the lineshay

) _ _ appear which are more pronounced the largeas is clearly
SDFIG_. 10 RW simulations for the mode of a random jump on a copexl  qeap in Fig. 10. On the other hand, when fixing the echo dela
, 7= 1 = 30 us): 1D “H NMR spectra for the solid-echo sequence with
various echo delays,. at a large value a strong dependence of the spectra on tf
correlation time is found, too. For example, the changes in th
lineshape for &, = 100 us disappear usinga = 1 ms for the
betweert, and the amount of variation i, will be explained random jump on the cone, cf. Fig. 11b (RJ).
in detail below where the particular lineshape of the spectraAnalyzing the 1D spectra in Fig. 10 more precisely it be-
will also be discussed. In conclusion we add that investigatimgmes evident that mainly the intensity in the middle of the
the o process in supercooled liquids experimentally similapectrum declines when extendityg In the following, we try
changes in the lineshape have been found for correlation timesexplain this finding on a qualitative level. Considering
7> T% and large echo delays (16, 43. However, a system highly restricted motions the molecular orientation and, thus
atic analysis of these 1D spectra comparing various typesthé NMR frequency varies only a little. Obviously, these small
isotropic dynamics is, to our knowledge, still missing. changes inw, are not sufficient to affect the 1D spectra for
3.2.2. Restricted dynamics: Exponential relaxatiodAs smallt,. This becomes clear when inspecting Eqg. [2]. Provided
noted above, highly restricted dynamics can only be studied that, at a timet = t,, a small angle rotational jump causes a
applying 2D NMR in time domain if large evolution timés slight shift in frequency byAw,, the phase#(0, t;) ando(t,,
are chosen. Furthermore, it is well known that this kind dt,) differ by Awqt,. Using a smallt, this phase shift is too
dynamics is difficult to observe in 2D NMR spectra becaudtle to affect the building of the echo significantly. However,
the ellipses resulting for such small angle fluctuations are hangreasing the echo delay leads to larger phase shifigt,

a b
1.04
0.9
cos
Ft
° 0.8
t,=100 s | \ g
0.7 H
06 ARRAM ) T MRARAM ) v ALY | T T

T T T T T T T T
1E-3 0.01 0.1 1 10 -200 -100 0 100 200
t /ms v/ kHz
FIG.11. RW simulations for the models of a random jump on a cone and of a rotational jump about various polaA@r@iescone ¥ = 6°): (a) cos—cos

correlation functions (four-pulse sequente= 18 us, A = 15 us), inset: applied anglesys and jump correlation times; (b) 1D *H NMR spectra (solid-echo
sequencet, = 100 us) for the pairs Ay, 7)) indicated in (a).
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and, consequently, to effects in the spectra. Therefore, itremdom jump a spectrum typical of rigid C-D bonds is ob-
plausible that, for highly restricted dynamics, changes in tiserved, distinct changes in the lineshape are seen for rotation
lineshape can solely be observed by applying lagg€onsid jumps about constant angles). The observed changes are
ering an isotropic 3° jump with a > T%, similar spectra were similar to those in Fig. 10. Further, they are more pronounce
observed in Fig. 8. This is understood taking into account th#te smalleAy. The latter finding becomes reasonable inspect
under these circumstances, a just as restricted area of the ingjt the jump correlation times; corresponding to various
sphere is covered during the pulse sequence and, hence,amglesAy. Of course, considering smaller angles, shotter
considerations hold for this kind of motion as well. must be used to obtain a similar correlation function, cf. Fig.

The particular lineshape of the 1D spectra for latge 11a. Therefore, the smallén) the more molecular reorienta-
becomes clear taking into account the angular dependencdiarfis take place on the time scale of the solid-echo sequenc
we(6), cf. Eq. [1]. Assuming for simplicity that the restrictedand, consequently, the more strongly the lineshape is affecte:
motions change the molecular orientation during the solid-echoAll together, it has turned out that highly restricted motions
sequence by approximately the same small amaduhtthe can be studied by recording 1D NMR spectra if large echc
resulting frequency shiftAw, depend only on the derivationdelayst, are applied in the solid-echo sequence. Moreover
of wq(6). Comparatively largeAw, and, hence, large phasesimilar to the results for isotropic motions, we have found
shiftsAwqt, result for NMR frequencies where the cursg(6) changes in the lineshape of these spectra evenr for T%
is steep. As a consequence, molecules characterized by sudvided that case 2 is valid, i.er, < T%. The latter result
initial wq contribute less to the echo and the spectral intensityice again demonstrates that with measuring correlation func
at these positions declines the most. Inspeciing) it is tions and 1D spectra simultaneously further information abou
obvious that the curve is flat fa# ~ 0° and 6 ~ 90° corre- the mechanism of molecular reorientation is available, whict
sponding to the outer edges and the singularities, respectivelyll be particularly important when investigating ti8eprocess
whereas it is steep fai ~ 54° causing intensity in the middlein supercooled liquids and glassex (42).
of the spectrum. Therefore, the intensity in the latter part of 1D
spectra is reduced in the presence of restricted motions. 4. CONCLUSION

Apart from the random jump, we now study reorientations
on the cone which involve a constant polar angle. Using By carrying out RW simulations we have calculated D
this example, we want to demonstrate that restricted motioN8IR spectra and the results of 2iBl NMR experiments in
characterized by time constants> T% andt; < T% (case 2) time domain for various dynamical models. Until now, the
cause changes in the 1D lineshape as well. Moreover, we whatter experiment was mainly applied to measure the correls
to investigate the dependence of the spectra on the jump artgde functionf, for ultraslow motions. Here, we have system
Ays. However, when looking at this model one problem arisegtically studied whether this technique can also be used t
because the correlation timefor a certain pair £;, Ay) is not determine the corresponding correlation timehen consid-
known a priori. This difficulty results from the fact that Eq. [8]ering faster dynamics. It has turned out that one has to distin
is only valid for isotropic motions, but, of course, a dependenggiish between exponential relaxation and nonexponential re
of 7 on the jump angleAys is expected in our model, too.laxation caused by a distribution of correlation tim®ggr).
Neverthelessy can be roughly estimated considering in th€oncerning exponential relaxation we have shown that alst
RW simulations the correlation function for a evolution titge correlation timesA = 7 < T% can be measured by applying
which, on the one hand, is large enough to lead to a disti2ld °H NMR in time domain if an extended phase cy®8)(is
decay in the case of a restricted motion but, on the other, iswsed. Therefore, the time window of this experiment is en-
small as possible to still obtain a fair guess ofHere, we larged by approximately 2 decades and a dynamical rang
chooset, = 18 us. becomes accessible for 2D NMR which was reserved for :

According to our goal, we calculate 1D spectra resulting féineshape analysis of 1D NMR spectra in the past. However
motions on the cone which are characterized by different juntipe situation changes if there is a distribution of correlation
anglesAys but a similarr of about 1 ms. Here, we choodgs = times G(Ig7). Then, the resulting nonexponential correlation
9, 20, and 45°. In order to obtain a comparable correlation timfienctionf, is not properly measured by 2D NMR as soon as the
when using differeniAys we simulate the cos—cos correlatiordistribution contains correlation times< T%. This finding is
functions fort, = 18 us varyingr; until a time constant;;” = understood taking into account that magnetization of molecule
1 ms is observed, respectively. The decays are displayed in Figth = < T% is not completely refocused in the applied
11a where the resulting are indicated as well. Using thesefour-pulse sequence and that, hence, various pagglgf) do
pairs (;, Ay) we calculate the 1D spectra corresponding to armot uniformly contribute to the measured signal. However,
echo delayt, = 100 us, cf. Fig. 11b. For comparison, theknowing the mechanism of molecular reorientation these ef
spectrum found assuming a random jump with 7, = 1 ms fects can be calculated. Consequently, it is, despite the de
is included, too. Obviously, completely different lineshapescribed problems, useful to apply mixing times which are as
result for the considered models. Whereas in the case oleort as possible.
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Strictly speaking, in the presence of a distributi@{lgr), with short echo delays. Instead, larigenust be used to detect
deviations between real and measured correlation function wiilis dynamics anyway.
appear if some of the jump correlation timesout of the All together, we have shown that the time windows of
corresponding distributiorG(Igr;) are on the order of the different NMR techniques which were assumed to be fixed ir
delayst, andA, respectively. Thus, one has to be particularlynost prior work become indistinct when studying complex
careful when investigating motions like the process in su- molecular dynamics. In this case, they depend not only on th
percooled liquids which are characterized by a distribution abrrelation timer but also on the mechanism of the considered
correlation times and for which the loss of correlation isolecular dynamics. In particular, when investigating motions
achieved by rotational jumps about small angles sificess where the loss of correlation is achieved step by step, the jum
much shorter tharr in this case. This caution is even morecorrelation timer; must be taken into account as well. For
important if large evolution timef, > A are used to determine example, ifr and 7; differ by many orders of magnitude it is
the value of the elementary jump angle by carrying out 2possible that the same small step motion simultaneously mar
NMR experiments in time domain. For this kind of measurefests itself inT,, 1D, and 2D NMR experiments. Therefore,
ment one has to ensure that all appearingire long with carrying out all these measurements at the same time yielc
respect to the applied evolution timés in order to obtain additional information about molecular dynamics since one
correct results. dynamical model must describe all resulting NMR observ-

Furthermore, we have investigated the effects of highbbles. Such a simultaneous description is, on the one hand,
restricted dynamics on 2D NMR experiments in time domairnery challenging task and, on the other, it demonstrates the
Such small amplitude reorientations can clearly be observed\ifMR is a powerful tool when revealing the mechanism of
large evolution times, are applied. For shot} and, thus, iff,, complex molecular dynamics.
of course only a very small amount of correlation is lost. We close with the remark that RW simulations have prover
Therefore, it is generally, independent of its actual value, vety be well suited to calculating the results of 1D and 2D
difficult to determine the correlation timeof highly restricted NMR experiments in the presence of complex molecular dy-
motions. A puzzling situation appears if a distributi@figr) namics. In particular, simulating 1EH NMR spectra for such
broader than the experimental time window is taken into amotions is a straightforward task. Although all RW simulations
count. In this case, the time constant of the correlation functitive been carried out for the special cas€HfNMR, it is
for a sufficiently larget, is only slightly affected by a strong expected that similar results will be observed considering othe
shift of G(lgr) but it is to a high extent given by the timenuclei with a dominating single particle interaction lik¥&C
window of the 2D experiment itself. Nevertheless, a roughr *'P.
estimate of the position db(Igr) is available by analyzing the
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