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By carrying out random walk simulations we systematically
study the effects of various types of complex molecular dynamics
on 2H NMR experiments in solids. More precisely, we calculate
ne-dimensional (1D) 2H NMR spectra and the results of two

dimensional (2D) 2H NMR experiments in time domain, taking
into account isotropic as well as highly restricted motions which
involve rotational jumps about different finite angles. Although
the dynamical models are chosen to mimic the primary and sec-
ondary relaxation in supercooled liquids and glasses, we do not
intend to describe experimental results quantitatively but rather to
show general effects appearing for complex reorientations. We
carefully investigate whether 2D 2H NMR in time domain, which
was originally designed to measure correlation times of ultraslow
motions (t > 1 ms), can be used to obtain shorter t, too. It is

emonstrated that an extension of the time window to t > 10 ms
is possible when dealing with exponential relaxation, but that it
will fail if there is a distribution of correlation times G(lgt). Vice
ersa, we show that 1D 2H NMR spectra, usually recorded to look
t dynamics with t in the microsecond regime, are also applicable

for studying ultraslow motions provided that the loss of correla-
tion is achieved step by step. Therefore, it is useful to carry out 1D
and 2D NMR experiments simultaneously in order to reveal the
mechanism of complex molecular motions. In addition, we dem-
onstrate that highly restricted dynamics can be clearly observed in
1D spectra and in 2D NMR in time domain if long solid-echo
delays and large evolution times are applied, respectively. Finally,
unexpected observations are described which appear in the latter
experiment when considering very broad distributions G(lgt). Be-
ause of these effects, time scale and geometry of a considered
otion cannot be extracted from a straightforward analysis of

xperimental results. © 2000 Academic Press

Key Words: 1D 2H NMR; 2D 2H NMR; random walk simula-
ions; molecular dynamics; disordered systems.

1. INTRODUCTION

NMR is well suited to study slow molecular dynamics
solids. In particular, various2H NMR techniques have prov
valuable tools for such investigations (1). One-dimensiona
(1D) 2H NMR spectra are usually recorded to analyze mo-
ular reorientations with correlation times on the order of
inverse quadrupolar coupling constant, i.e., in the microse
regime. On the other hand, applying two-dimensional (2D2H
43
e
nd

NMR, it is possible to look at ultraslow motions which
typically characterized by time constants in the range
about a few milliseconds to some seconds. For example,
2D 2H NMR in time domain allows one to measure the co-
lation function f 2 of the second Legendre polynomial, wh
the latter describes the molecular orientation (2). Thus, the
corresponding correlation timet of ultraslow reorientations
directly accessible.

In the first applications of 1D and 2D2H NMR, compara-
tively simple types of molecular dynamics were studied o
least, simple dynamical models were used in an analysis
results. Concerning 1D spectra, rotational jumps occu
about a single axis and among a small number of sites
mainly under investigation, e.g.,p flips (3, 4) or 2p/3 (5) and
2p/5 jumps (6). Sometimes, small angle fluctuations about
jump axis (7–9) or a wobbling of the axis itself (10) were
additionally taken into account. In the early days of 2D2H
NMR, similar kinds of motion were considered (11–15). When
looking at isotropic dynamics, the model of isotropic rotatio
diffusion was applied to simulate measured 1D and 2D spe
respectively (1, 16). Only recently, 2D NMR in time doma
was also used to reveal the mechanism of more com
molecular dynamics, i.e., rotational jumps taking p
about various axes and involving different finite jump an
(17–20).

In a forthcoming publication, we will study complex mole
ular dynamics connected with the primary and secondar
laxation in supercooled liquids and glasses by applying 1D
2D 2H NMR experiments (21). However, due to the comp-
ated properties of these motions and the structure o
nvolved pulse sequences, unexpected findings appear i
nquiry which make a straightforward analysis of the res
mpossible. For a better understanding of these experim
bservations, we will here systematically investigate the

ects of various types of complex molecular dynamics on2H
NMR measurements by carrying out simulations. More
cisely, we calculate the results of 1D2H NMR spectra and o
2D 2H NMR experiments in time domain. Such a system
investigation is, to our knowledge, still missing for comp
molecular dynamics although such motions exist in a lo
fields, for example, as aforementioned, at the liquid to g
1090-7807/00 $35.00
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44 VOGEL AND RÖSSLER
transition. In order to calculate the relevant NMR observa
in our study we carry out random walk (RW) simulations, s
this technique has recently proved well suited to des
complicated motions (18–20, 22). We use dynamical mode
reflecting the actual molecular dynamics in supercooled liq
and glasses to some extent. This choice is intended to allo
easy comparison of the results obtained in the RW simula
and in our2H NMR experiments (21), respectively. Howeve

e do not plan to describe the experimental findings qua
ively, but rather we will try to keep the models as simple
ossible in order to stress the general aspects. Another g

his publication is to study the limits of the time windows of2H
NMR measurements. Such an analysis is not only of me
ical interest but also of practical importance when conside
supercooled liquids, as will be demonstrated. We note
although we solely deal with2H NMR, the results of ou
investigation are not limited to deuterons but can be transf
to other nuclei with a dominating single particle interactio
well.

According to our goal, we want to simulate molecular m
tions typical of reorientations in supercooled liquids
glasses. Therefore, we have to summarize the main featu
molecular dynamics in such samples at this point. It is
known that the isotropic main relaxation in supercooled liq
(a process) is strongly temperature dependent (23) and char
acterized by a distribution of correlation timesG(lgt) (24).

oreover, 2D2H NMR experiments in time domain (17–20)
nd other multidimensional NMR studies (25) have yielded
aluable information about the mechanism of molecular r
ntations involved in thea process. It has turned out that th

s a gradual loss of correlation which is achieved by m
lementary rotational jumps about various finite jump an

aking place one after another. This means that the eleme
eorientations are characterized by a jump correlation timt j

which is much shorter than the correlation timet. Often, there
is a secondary relaxation called Johari-Goldstein-b process in
supercooled liquids and glasses, too (26). This secondary re
axation survives even below the liquid to glass transition,
t temperatures where thea process is already frozen in. T

b process is mostly regarded as a highly restricted motion
described by a very broad distribution of correlation tim
(26, 27).

Having in mind these observations in supercooled liq
and glasses, the problems to be tackled become obvious.
whether the time windows of 2D2H NMR experiments can b
enlarged should be studied. Besides the methodical im
tance, such an extension seems to be particularly usef
supercooled liquids due to the broad distributionsG(lgt) and
he strong temperature dependence of molecular dynam
hese substances. Whereas the upper limit of the time wi
s determined by the spin–lattice relaxation and, thus, dep
ng on sample and temperature fixed on the order of hun
f milliseconds or some seconds, the lower boundary ca
rinciple be shifted by almost 3 decades from roughly 1 m
s
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a few microseconds when applying a recently developed
ditional phase cycle (28). However, when studying dynam

n the microsecond time scale by 2D NMR one has to ke
ind that molecular reorientations occur during the frequ
etection. As has been shown, this fact complicates the
sis of 2D 2H NMR spectra (29, 30). On the other hand, th

information content of 2D NMR experiments in time dom
under these circumstances has not yet been investigate
systematic manner. Therefore, we will here follow the ques
of whether the correlation functionf 2 can be measured even
t on the order of microseconds using 2D2H NMR in time
domain. As will become obvious, the results of this study
strongly influenced by the fact that, for experimental reas
a four-pulse instead of the usual three-pulse sequence m
applied in2H NMR (1).

As aforementioned, another intention of the present pap
to study the effects of complex molecular reorientations on
lineshape of 1D2H NMR spectra. In particular, dynamic
models typical of the relaxations in supercooled liquids
glasses shall be considered. Consequently, when looking
a process, 1D NMR spectra for isotropic rotational jum
about various finite angles have to be calculated. How
such simulations go beyond the above-mentioned prior ef
Therefore, we will here demonstrate that 1D spectra in
presence of complex molecular dynamics can easily be c
lated by carrying out RW simulations. These RW simulat
have been used in NMR so far only when evaluating resu
2D experiments in time domain (18–20).

Having tackled these more general tasks concerning 1D
D 2H NMR experiments, one can investigate in detail h

these measurements are affected by various dynamical m
Above all, it is interesting to look at the meaning of the ju
correlation timet j in the case of motions like thea proces
where the time scales oft andt j are different. For the prese
investigation, it is useful to distinguish three cases:

● case 1:t, t j . T*2;
● case 2:t . T*2 . t j;
● case 3:T*2 . t, t j $ 1/d.

Here,d represents the anisotropy parameter of the quadru
interaction for deuterons, cf. Eq. [1], andT*2 the time constan
of the spin–spin relaxation in the absence of motion,
considering2H NMR the time constant of the decay caused
the static dipole–dipole interaction. In supercooled liquids
glasses,T*2 is typically on the order of several hundreds
microseconds. The first case,t, t j . T*2, corresponds to th
dynamical range for which usually the terms “ultraslow m
tion” or “slow motion limit” are applied. Such motions c
easily be studied by 2D NMR (1). Case 3 is often calle
“intermediate motional regime.” This interval agrees with
time window of 1D NMR (3). Here, we will mainly deal wit
cases 2 and 3 because of their importance for superc
liquids and glasses. In case 2, the correlation timet lies right
in the time window of 2D2H NMR, whereas the jump corr-
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45MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
lation time is found in the one of 1D2H NMR. Therefore, it is
interesting to study whether motions where the time scal
t and t j are separated can simultaneously be observed i
and 2D NMR. We mention that such a scenario is reporte
the limit of isotropic rotational diffusion where the differen
of both time scales tends to infinity (16).

Finally, since theb process in glasses is believed to b
highly restricted motion, it is necessary to investigate
influence of such dynamics on2H NMR measurements, too.
is known that small angle fluctuations do not strongly affec
(9) and 2D (1) 2H NMR spectra recorded in the usual w
using short echo delays. Here we show that, nevertheless
can be observed both in the 1D spectral lineshape and in 22H
NMR in time domain under certain circumstances. Moreo
we extensively discuss unexpected effects appearing i
latter experiment if there is a very broad distribution of co
lation times for a highly restricted motion, as is typical of
b process.

2. THEORY

Applying solid-state2H NMR the NMR frequency in th
otating framevQ depends on the orientation of the quadru-

lar coupling tensor with respect to the external static mag
field B0. Considering covalent C–D bonds, e.g., in deuter

rganic compounds, the quadrupolar coupling tensor is
etric and its principalz-axis points along the direction of t

bond. In this case, the NMR frequency is given by

vQ~u ~t!! 5 6
d

2
~3 cos2u ~t! 2 1! h 5 0, [1]

where the anisotropy parameterd is typically 2p 3 125 kHz
and u represents the angle betweenB0 and the C–D bond
Thus,vQ and the orientation of the bond axis are connecte
the second Legendre polynomialP2(cos u) and molecula
reorientations cause a variation of the NMR frequency.

1D 2H NMR spectra can be recorded by applying the so
cho pulse sequence. It consists of twop/2 pulses which ar

separated by an echo delayt p and shifted in phase byp/2.
Assuming perfect RF pulses and neglecting spin–spin r
ation, the signalS measured at a timet $ 2t p in the solid-ech
sequence is proportional to (3)

Stp~t! } ^cos$f~0, tp! 2 @f~tp, 2tp! 1 f~2tp, t!#%&,
[2]

here the phasesf are calculated according to

f~t1, t2! 5 E
t1

t2

vQ~t9!dt9 [3]
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nd the bracketŝ. . .& denote the ensemble average. If mo
lar dynamics during the pulse sequence can be neglectevQ

will be constant and we can rewrite Eq. [2] asStp(t) }
^cos{vQ(t 2 2t p)} &. Obviously, an echo appears att 5 2t p and
the lineshape of the 1D spectrum, obtained by a Fourier t
formation starting at the echo maximum, is independent o
applied echo delayt p. In contrast, if molecular reorientatio
take place during the pulse sequence a time-dependentvQ(t)
results. Under these circumstances, a reduced amplitude
echo and changes in the lineshape of the 1D spectr
observed which depend both on the kind of motion and o
echo delayt p (3–10).

2D 2H NMR experiments in time domain can in principle
carried out by applying a three-pulse sequence with pr
experimental parameters. For example, using the Jeener–
kaert sequence, (p/ 2)y–t p–(p/4)x–t–(p/4)x–t 2, it is possible
to create a stimulated echo at a timet 2 5 t p (31). Evaluating
the amplitude of the stimulated echo for various mixing ti
t @ t p and considering ultraslow motions (case 1), a two-
correlation function

F tp

sin~t! } ^sin@vQ~0!tp#sin@vQ~t!tp#& [4]

is measured (2). If the so-called evolution timet p is set to a
small value, i.e.,vQt p ! 1, the rotational correlation functio
of the second Legendre polynomialf 2(t) will be obtained. Thi
becomes clear by expanding the sine functions in Eq. [4]
taking into account Eq. [1],

F tp

sin~t! } t p
2^vQ~0!vQ~t!& } f2~t! ~vQtp ! 1!. [5]

Consequently, the correlation timet describing the decay off 2

is accessible by 2D2H NMR in time domain. However, th
conditionst p , T2 andt , T1Q, the latter describing the dec
of quadrupolar order, must be fulfilled to avoid a loss of sig
due to relaxation.

So far, we have supposed that the evolution timet p can be
chosen sufficiently small and, thus,f 2 can be measured
applying the described three-pulse sequence, cf. Eq. [5
experimental practice, however, the stimulated echo disap
in the dead time of the receiver for such short evolution ti
t p. Therefore, it is mandatory to insert an additional (p/ 2)x

pulse after the third one in order to refocus the stimulated
outside the dead time (1, 14, 15). Altogether, the following
our-pulse sequence must be applied in2H NMR (1, 14, 15):

~p/ 2!y–tp–~p/4!x–t–~p/4!x–D–~p/ 2!x–t2.

Still keeping the assumption of the slow motion limit,
additional pulse does not affect the results and, hence,f 2 can be
measured with the displayed four-pulse sequence. We em
size that, because of the experimental necessity for2H NMR, in
all RW simulations throughout the present paper the four-p
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46 VOGEL AND RÖSSLER
sequence is taken into account. Only for a few times, whic
explicitly marked, is the three-pulse sequence simulate
order to show effects arising due to the experimental app
tion of the four-pulse sequence.

If one is not only interested in measuringf 2 but also want
to obtain further geometrical information about a molec
motion, it is useful to apply longer evolution timest p as well.
Geometrical information is obtained when varying the ev
tion time becauset p can be used as a geometrical filter sim
to the momentum transferQ in quasielastic neutron scatter
11). This meaning oft p becomes obvious upon inspecti

once again, Eq. [4]. The longer the evolution timet p is chosen
he smaller the variation invQ and, thus, the change in t
molecular orientation during the mixing timet needs to be i
order to cause the same loss of correlation inFtp

sin(t) becaus
only the phasevQt p is relevant for the experimental result. W
note that by measuringFtp

sin(t) for varioust p the meaning of th
evolution time as geometrical filter was exploited to determ
the elementary jump angles involved in thea process durin
the past few years (17–20).

Following our objective, we now drop the assumption
ltraslow motion and take into account molecular dynam
uring the evolution timet p and the echo delayD. This is

mandatory as soon as the jump correlation timet j is on the
order of these two delays. Of course, there are sucht j for
correlation timest in the microsecond regime (case 3) but
emphasize that they can be found even for correlation t
t . T*2 when looking at motions where the time scales oft and
t j are separated (case 2). As mentioned above,t on the orde
of microseconds recently got, in principle, accessible for
NMR because of an extended phase cycle which allows
set the mixing time to valuest ! T*2 (28). Applying this phas
cycle, shorter mixing times can be used since disturbing
tional signal contributions, caused by single- and double-q
tum coherences which do not decay due to spin–spin relax
duringt , T*2, are suppressed. Molecular reorientations du
the evolution timet p and the echo delayD can be taken int

ccount if, from the time-dependentvQ(t) in analogy to Eq
[2], the phasesf in this periods are calculated. Applying t
above-displayed four-pulse sequence and evaluating the
amplitude as usual, the following correlation function is
tained:

F tp,D
sin ~t! } ^sin@f~0, tp!#sin@f~t9, t9 1 D!

2 f~t9 1 D, t9 1 tp 1 2D!#&. [6]

Here, the phasesf are defined according to Eq. [3] andt9 5
t 1 t p is used. Obviously, instead of the frequencyvQ, cf. Eq.
[4], different phasesf are now correlated. Moreover, t

ddition of the fourth pulse leads to an evident asymmet
oth time dimensions which is not relevant for ultraslow

ions (case 1). This asymmetry in time domain is reflecte
n asymmetry of the corresponding 2D NMR spectra (29, 30).
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ecause of these effects it is not yet clear which informa
an be extracted from 2D NMR experiments in time doma
aster dynamics is studied, as found in cases 2 and 3.

Choosing different phases and pulse lengths in the desc
our-pulse sequence, one can also record other corre
unctions (1, 14, 15). For example, a correlation functi
hich is equivalent to Eq. [6] except that the two sine funct
re replaced by cosine ones is measurable, too. In wha

ows, we will refer to these types as sin–sin and cos–
orrelation functions, respectively. We mention that, cons
ng the latter correlation function, first,f 2 is not measured in th
limit t p3 0 and, second, the signal is damped byT1 instead o
T1Q during the mixing time (1).

2.1. Random Walk Simulations

The process of molecular reorientation is often treated i
framework of the Ivanov model (32), i.e., it is assumed that t
orientation is constant between two rotational jumps of n
gible duration. Applying such a description the molec
dynamics may be regarded as a continuous time random
This is the basis of RW simulations because, under t
circumstances, one can mimic the stochastic process of m
ular dynamics using a random number generator. More
cisely, it is possible to create a large number of trajecto
V(t) describing the molecular orientation as a function of t
within the scope of a certain dynamical model. Once t
trajectories are known, the time dependence of the corres
ing NMR frequencies and, consequently, the results of
surements can be calculated provided that the frequencie
depend on the molecular orientation (18). The latter require
ment is met for the2H NMR experiments which are discuss
here. All together, in order to calculate averages to be
pared with NMR observables, RW simulations can be ca
out instead of solving master equations, as has mostly
done so far (22, 33). As will be demonstrated, the technique

W simulations turns out to be more flexible and easie
andle in a lot of cases.
In addition to the above-mentioned assumptions of

vanov model, we suppose in all simulations that the prob
ty for a rotational jump to occur is independent of the t
hich has gone by since the last jump has taken place

atter precondition will be met in RW simulations if the wait
imes between two jump events are chosen from an expon
istribution (34), cf. below. Moreover, it is here sufficient
alculate trajectoriesu (t) instead of V(t) because axiall

symmetric quadrupolar coupling tensors are considered, c
[1]. We add that, although all these assumptions are kept
present context, they can in principle be dropped in fu
investigations if the technique of RW simulations is refine

In the following, how the trajectories of the molecular o
entation are simulated will be described in detail. In orde
create the trajectories, dynamical models are necessar
mentioned above, we use models reflecting molecular dy
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47MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
ics in supercooled liquids and glasses to some exten
particular, we take into account the following examples:

● isotropic random jump;
● isotropic rotational jump about a constant elemen

jump angleg;
● random jump on a cone with an opening anglex;
● rotational jump on a cone with an opening anglex involv-

ing a constant polar angleDc 5 2p/n wheren is a natura
number.

Whereas the prior two models shall represent the isotropa
process, the latter two mimic theb relaxation. In addition, th
first model gains some interest when studying isotropic r
entations of guest molecules in a glassy matrix (35, 36). In all
ases, we consider exponential and nonexponential relax
espectively. Following Hinze (18), three steps are importa
hen creating trajectoriesu (t): (i) selection of a startin

orientationu0 ensuring an isotropic distribution ofV0 as found
in supercooled liquids, (ii) random choice of a waiting ti
from an exponential distribution characterized by the ju
correlation timet j, and (iii) calculation of the new orientatio

fter the jump. After step (i), steps (ii) and (iii) are alterna
epeated until a trajectory of sufficient length is recorded w
he length is determined by the duration of a single-sho
eriment.
The geometry of the above-listed dynamical model co

nto play in step (iii). When simulating an isotropic rand
ump, according to the definition of this kind of motion,
ew orientation after a jump is always chosen randomly as

n step (i). Assuming an isotropicg° jump, the orientationu i11

after the jump can be calculated from the one beforeu i using
(18)

u i11 5 arccos@sin u isin g cosc 1 cosu icosg#, [7]

wherec is taken from the interval [0, 2p[ with equal proba
bility. In the case of reorientations on a cone with open
anglex, the orientation of the cone axisua is chosen by chanc
at the beginning of each trajectory, ensuring an isotropic
tribution of all axes. Afterward, the starting orientation as w
as all other positions throughout a trajectory are calcu
according to Eq. [7] with fixedu i 5 ua andg 5 x/2. Depending
on the model,c is either selected randomly from the inter
[0, 2p[ or varied byDc each time.

The time scale of the dynamics within one of these mo
s adjustable by the choice of the jump correlation timet j.

hen investigating random jumps the correlation timet equals
the jump correlation timet j because the maximal loss
correlation is achieved with each reorientation. On the o
hand, in the case of an isotropicg° jump, several elementa
rotational jumps are necessary to destroy the correlation.
leads to the above-mentioned separation of the time scalet
andt which is quantified by the expression (37)
j
In

y

i-

on,

p

re
x-

s

is

g

s-
ll
d

l

ls

er

is
f

t j

t
5

3

2
sin2g. [8]

It becomes clear that the elementary jumps will take plac
a completely different time scale than the loss of correlati
g is small. When simulating nonexponential relaxation, a
erogeneous distribution of correlation timesG(lgt) can be
taken into account by using differentt j for the various trajec-
tories but keepingt j fixed during the course of one individu
u (t).

Having recorded the trajectoriesu (t) it is a straightforwar
ask to obtain the corresponding results of 1D2H NMR spectra
and of 2D2H NMR experiments in time domain. First, the ti
dependence ofvQ(t) is determined according to Eq. [1] whe
d 5 2p 3 125 kHz is used in all simulations. Afterward,
time signals during the solid-echo sequence and the a
mentioned four-pulse sequences are calculated using Eq
and [6], respectively. The phasesf appearing in these equ
tions, cf. Eq. [3], are evaluated as sum over the different p
shifts which are achieved during the various periods of
stant frequency, i.e., during the waiting times. Finally, ca
lating results of 2D experiments, the amplitude of the sti
lated echo for various mixing timest is evaluated as it is in
real measurement. On the other hand, the 1D spectr
obtained after a FT of the time signal during the solid-e
sequence starting att 5 2t p.

So far, we assumed ideal experimental conditions. How
several additional effects appear in real experiments w
therefore, must be regarded at this point. Calculating 1D s
tra, first, one has to take into account the line broadening
to static dipole–dipole interaction. This is done in the
simulations by damping the time signal with a gaussian f
tion before carrying out the FT. Further, the finite pulse len
in a real measurement have to be considered. Following B
et al. (38), this is achieved by multiplying the obtained spe

ith a function A(vQ) which describes the excitation effe
arising for finite pulse lengths,

A~vQ! 5 vpDp

sin~DpÎvp
2 1 1

2 v Q
2 !

DpÎvp
2 1 1

4 v Q
2

. [9]

In this equation,Dp is length of a (p/2)-pulse andvp represent
the angular velocity of the rotation imposed on the mag
zation by this pulse. In all simulations, the various param
describing damping and excitation effect are kept fixed. T
are chosen in such a way that 1D spectra similar to experi
tal ones result as will be described in detail elsewhere (21). For
example,Dp 5 3.8 ms is used in all simulations. Since dipo
dipole interaction and finite excitation bandwidth of the p
irradiation are expected to have little influence on 2D2H NMR
experiments in time domain for the chosen dynamical mo
both effects are neglected when calculating sin–sin and
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48 VOGEL AND RÖSSLER
cos correlation functions, respectively. Furthermore, we d
take into account molecular dynamics during the RF puls
any of our RW simulations.

3. RESULTS AND DISCUSSION

In what follows, we present the results of various R
simulations. We begin by discussing the findings for 2D2H
NMR in time domain and will later describe the observat
for 1D 2H NMR spectra.

.1. 2D NMR in Time Domain

As aforementioned, dealing with 2D2H NMR in time do-
main we mainly address three questions. First, we inves
whether it is possible to measure the correlation functiof 2

even for correlation timest , T*2, i.e., for t on the order o
microseconds. Then, we study how 2D NMR experimen
time domain are affected by highly restricted motions
finally, we look at the influence of very broad distributio
G(lgt). However, before tackling these problems we wo
ike to insert some comments on the proceeding.

In order to parametrize the simulated sin–sin and cos
orrelation functions (i 5 sin, cos), a suitably modified Koh

rausch–Williams–Watts (KWW) function (39, 40)

F tp

i ~t! 5 ~1 2 Ctp

i !expS2S t

t tp

appD btpD 1 Ctp

i , [10]

is fitted to the data as is usually done when analyzing
surements in supercooled liquids (17–20). This function allows
us to characterize the time scalet tp

app and the stretchingb tp for
xponential and nonexponential decays, respectively. Th
ex t p is used in Eq. [10] since the measured decay depen

the applied evolution time, cf. Eq. [6]. The superscript “a
shall indicate that the time constantt tp

app is the correlation tim
which one would apparently measure in a real experim
provided that there is the same kind of dynamics as in
simulation. Furthermore, introducing a rest correlationCtp

i , an
incomplete loss of correlation, e.g., in the case of restr
dynamics, can be taken into account. Assuming the slow
tion limit an evaluation of the rest correlationCtp

i as a function
of the evolution time reveals information of the geometry
the considered molecular dynamics (11). We note in passin
hat the KWW function is solely used as a fitting function in
resent context but is not thought to have any physical m

ng. Fitting an exponential decay with Eq. [10]b tp, of course
equals 1 andt tp

app directly represents the time constant of
loss of correlation. In contrast, assuming a distributionG(lgt),
the resulting nonexponential decay leads to ab tp , 1. Then, the
apparently measured mean correlation time can be calcu
according to (17),
ot
in

s

te

in
,

d

os

a-

in-
on
”

nt
e

d
o-

f

n-

ted

^t tp

app& 5
t tp

app

b tp

G~1/b tp!, [11]

whereG denotes the gamma function.
When intending to mimic a real measurement of the co

lation functionf 2 we have to use a short evolution timet p in the
RW simulations, cf. Eq. [5]. Here, we applyt p 5 3 ms through-
out the paper where this particular value is motivated by
observation that shorter effective evolution times are ha
accessible in real 2D2H NMR experiments. This comes abo
due to both the finite pulse lengths (19) and the decrease of t
signal amplitude (}t p

2) for t p 3 0, cf. Eq. [5]. For the ech
elay in the four-pulse sequence, we apply a typical ex
ental valueD 5 15 ms. Finally, we add that we will skip th

index t p when consideringf 2, i.e., if according to our procee-
ing sin–sin correlation functions witht p 5 3 ms are simulated

3.1.1. Isotropic dynamics: Exponential relaxation.Using
various dynamical models we now want to analyze whe
one can measuref 2 for t in the microsecond regime. First,
simulate an isotropic random jump assuming exponentia
laxation. According to our goal, we study the sin–sin corr
tion functions (t p 5 3 ms) for various jump correlation timest j

covering the range from some microseconds to the millise
regime. Strictly speaking, the amplitude of the stimulated
after the four-pulse sequence (D 5 15 ms) is calculated fo
various mixing timest using Eq. [6]. The results together w
fits obtained by applying Eq. [10] (b tp 5 1) are displayed i
Fig. 1a. Looking at the fit parametertapp, which is expected t
represent the correlation timet measured in an experiment
becomes evident that, for all jump correlation times used i
simulation,t j 5 tapp holds within an error of about 1%. Th
error is caused by the noise in the RW simulation due the
number of trajectories (N 5 50,000). Thegood agreement
tapp and t is, on the one hand, a consequence of the ran
jump mechanism because, in this case, the correlation tt
equals the jump correlation timet j and, on the other hand, th
finding demonstrates that even for dynamics on the time
of about 10ms correct correlation times can be measu
within the scope of the applied model.

However, the amplitude of the measurable signal, i.e.
signal for t ! t, declines when leaving the slow motion lim
and considering faster dynamics. This decrease is caus
molecular dynamics taking place during the evolution timt p

and the echo delayD. In a RW simulation, the dependence
the measurable signal on the correlation time can be ch
terized by the reduction factorRtp,D

2D (t). In analogy to th
well-known reduction factor of 1D NMR, we define this qu
tity in the present context as the amplitude of the stimul
echo resulting fort 5 0 and a certaint divided by the heigh
for t3 `. Of course, the same number of trajectories mu
accumulated for allt. The reduction factorR3,15

2D (t) for the
isotropic random jump is displayed in Fig. 1b. For compari
we have also included the reduction factor forD 5 100ms and
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49MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
for the three-pulse sequence (t p 5 3 ms) assuming the sam
kind of motion. It is evident that the amplitude of the sig
strongly decreases with decliningt in all cases. However,
dependence of the reduction factor on the applied pulse d
becomes obvious as well. Considering the four-pulse sequ
the echo amplitude starts to decrease att ' 10D, wherea
looking at the three-pulse sequence an inset of the decl
visible att ' 10t p. Finally, fort , D andt , t p, respectively
a signal is hardly measurable any longer. These findings
onstrate that the longest delay of the applied pulse seq
determines the reduction factor which, of course, is a plau
result. Therefore, having in mind that in real experiments
four-pulse sequence with an echo delayD ' 15 ms is applied
correlation times shorter thant ' 10 ms, say, cannot b
determined by applying 2D2H NMR and even fort , 1 ms,
the number of scans carried out in the experiment has
increased in order to obtain a sufficiently large signal-to-n
ratio. We already note that these observations will gain s
importance if a distribution of correlation timesG(lgt) is
present. Further, we add that a similar behavior of the redu
factor is found recording 1D (3, 5, 7) and 2D2H NMR spectra
(29, 30). This is reasonable because, in these experiments
techniques are used as well.

Inspecting once again Fig. 1a, still another effect is vis
The final state value ofFtp

sin(t) for t @ t, which is characterize
by the fit parameterCtp

sin, cf. Eq. [10], does not only depend
t p, as found for ultraslow motion, but also ont. Referring to the

ecay curves in Fig. 1a, this parameter increases from
% in the slow motion limit, which is in accordance with

heoretical value for an isotropic motion (11), to about 9% fo
t 5 10 ms. The increased value ofCtp

sin for shortt again arise
because of motion during the various dephasing and refoc
periods in the experiment. When simulatingf 2 the enhance
value mainly comes up because of dynamics during the
delayD . t . This can be shown in the simulation by reduc

FIG. 1. RW simulations for the models of an isotropic random jump
andom jump (four-pulse sequence:t p 5 3 ms, D 5 15 ms), open symbols:

random jump (three-pulse sequence:t p 5 3 ms, t j 5 10 ms), dotted and das
b) reduction factors of the stimulated echo for the model of an isotropi

analogous defined reduction factor for the three-pulse sequence (t p 5 3 ms).
p

l

ys
ce

is

m-
ce
le
e

be
e
e

on

ho

.

ut

ing

ho

D in the four-pulse sequence or by calculating the correla
function f 2 after the three-pulse sequence which canno
measured. The latter is included in Fig. 1a as well. Obvio
using t 5 10 ms, the increase ofCtp

sin disappears for th
three-pulse sequence. The growth ofCtp

sin for t ' D is plausible
ince such kind of dynamics leads to an exchange in
requency during the periodD and, thus, to an “average” ov
a few vQ(t) when calculating the phase of the second
function in Eq. [6]. Therefore, with respect to a certainvQ(0),
the maximal loss of correlation cannot be reached. T
findings demonstrate that the enhanced final state val
Ftp

sin(t) arising for t ' D is an artifact caused by the expe-
ental application of the four-pulse sequence.
Very similar observations are found if an exponential re

tion caused by an isotropic 15° jump is simulated. In pa
lar, over the whole range of correlation timest . 10 ms,

correct time constants can be measured for this motion as
This is again demonstrated in Fig. 1a where the open sym
mark the RW simulations for the isotropic 15° jump and
dashed lines mark the corresponding fits to Eq. [10]. U
jump correlation timest j 5 3 ms andt j 5 100 ms in the
simulation, respectively, correlation timestapp 5 30 ms and
tapp 5 1 ms are obtained from the fits. Hence, in both c
tapp 5 10t j holds as is expected according to Eq. [8] and, t
a proper time constant is available. However, considerin
15° jump the increase ofCtp

sin for t ' D is even more pro-
nounced than in the case of the random jump. This is cl
seen when comparing the decays corresponding totapp 5 30ms
for both models in Fig. 1a. The observation is understood i
takes into account that for the 15° jump, due to the shortt j,
more reorientations take place during the periodD.

We add that the described effects were also observed
experimental investigation of an anisotropic motion. Stud
the sixfold jump of the molecules in crystalline hexamet
benzene correct correlation times in the microsecond re

d an isotropic 15° jump: (a) sin–sin correlation functions; solid symbols:
ropic 15° jump (four-pulse sequence:t p 5 3 ms, D 5 15 ms), crosses: isotrop

lines: fits using Eq. [10], inset: jump correlation timest j for the random jump
ndom jump:Rtp,D

2D (t) (four-pulse sequence:t p 5 3 ms andD 5 15 ms, 100ms) and
an
isot
hed
c ra
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50 VOGEL AND RÖSSLER
could be measured by applying 2D2H NMR in time domain
21, 41). Moreover, when looking att , T*2 a larger value o

Ctp

sin was found than in the slow motion limit.
We conclude that it is possible to extract correlation time

ms # t # T1Q from 2D 2H NMR experiments in time doma
if exponential relaxation is considered which involves isotr
motions or anisotropic large angle reorientations, respect
Consequently, the time window of this 2D experiment ca
enlarged by approximately 2 decades when looking at
dynamics and applying an extended phase cycle (28). How-

ver, care must be taken if the rest correlationCtp

sin is evaluate
to analyze the geometry of a motion characterized by a c
lation timet ' D.

3.1.2. Isotropic dynamics: Nonexponential relaxat
Now, we consider a distribution of correlation timesG(lgt). In
this case, the resulting nonexponential correlation functiof 2

can be measured by applying 2D NMR in time domain if fo
t out of this distribution the slow motion limit holds (case
Here, we check whether this is still true when parts of
distribution enter the regimet , T*2. We assume a heterog-

eous logarithmic Gaussian distribution

G~lgt! 5
1

Î2ps 2 expS2
~lgt 2 lgtm! 2

2s 2 D . [12]

sing such aG(lgt) the mean logarithmic correlation tim
^lgt& equals the maximum of the distribution lgtm and the
decadic full width at half maximum ofG(lgt) is given by
s=2 ln 2. In all RW simulations concerning nonexponen

isotropic dynamics, we chooses 5 0.8 corresponding to
distribution with a half width of about 1.9 decades, whic
typical of thea process in supercooled liquids.

First, we study an isotropic random jump in the presenc
such a distributionG(lgt). Following our objective we calcu
late sin–sin correlation functions varying lgtm. The results

sing againt p 5 3 ms andD 5 15 ms, are compiled in Fig. 2
lthough only a poor interpolation is reached, the data
tted to Eq. [10] in order to characterize time scale
tretching of the decays as was done in prior work (17–20).
he systematic deviations occur because, on the one ha

ogarithmic Gaussian distributionG(lgt) is used in the simu
lation and, on the other, a fit to a KWW function is appli
Nevertheless, we want to disregard these problems becau
quantitative results are to be obtained but only trends sha
shown. Inspecting Fig. 2, two effects are obvious when lgtm is
decreased with constant increment: First, the sin–sin co
tion functions become less nonexponential and, second
are less shifted to smaller values for smalltm.

These effects can be quantified displaying both the fi
rameterb tp and the mean time constant^tapp&, which is obtaine
from t tp

app andb tp according to Eq. [11], as a function oftm in
ig. 3. Strictly speaking, in the latter case, the dependen

he ratio ^tapp&/tm on tm is shown in Fig. 3a. For the ratio,
0

c
ly.
e
ch

e-

.

l
.
e

l

of
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d
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.
no

be

la-
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of

horizontal line will be expected if the measured mean
constant̂ tapp& varies according to the shift of the distribut
G(lgt). Indeed, such a behavior is found for ultraslow mot
However, ifG(lgt) containst , T*2, this is no longer true an
the ratio increases, i.e., the apparently measured time co
^tapp& is too long. We mention in passing that even in the s
motion limit ^tapp& should not equaltm because different ave-
ages are regarded. Concerningb tp an increase from 0.54
0.79 is visible in Fig. 3b, indicating the less nonexpone
loss for smalltm.

Both observations can be explained, remembering that
netization of molecules with correlation timest , T*2 is not
completely refocused in the four-pulse sequence, cf. Fig
This finding means that only as long asG(lgt) solely contain
t in the slow motion limit, all parts of the distribution un
formly contribute to the experimental result. However, th
no longer valid when parts ofG(lgt) enter the microsecon
regime. Then, shortert contribute less to the echo, as is see
the declining reduction factorR3,15

2D (tm), cf. Fig. 3c. Conse-
uently, the findings are no longer determined by the
istribution G(lgt) but by an effective distributionG*(lgt)

which is obtained by a multiplication ofG(lgt) with the re-
duction factorR3,15

2D (t), cf. Fig. 1b, since the latter quant
describes the reduced signal contribution for shortt. The
distributionG*(lgt) is the narrower the smallertm because th
portion which is cut off byR3,15

2D (t) becomes larger and larg
when reducingtm. Hence, a less nonexponential correla
function and an increase ofb tp with decreasingtm result in
agreement with the observations. Moreover, since the
part” of the real distribution contributes toG*(lgt) only in a
reduced manner, correlation timest in the slow motion limi
are overestimated in the measured average^tapp& and, thus
tapp& is longer than one would expect considering the

distributionG(lgt). As a consequence, the ratio^tapp&/tm grows
with decliningtm. We add that all these effects also appe

FIG. 2. RW simulations for the model of an isotropic random ju
assuming a logarithmic gaussian distributionG(lgt) (s 5 0.8), cf. Eq. [12]
in–sin correlation functions for various mean logarithmic correlation t
gtm (four-pulse sequence:t p 5 3 ms, D 5 15 ms). Dotted lines: fits using E
10].
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51MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
an isotropic rotational jump involving a constant jump angg
is studied as has been checked by carrying out some si
tions for that model.

Summarizing, it has turned out that the correlation func
f 2 is not correctly measured by applying 2D2H NMR in time
domain if there is a distributionG(lgt) which containst in the
microsecond regime. In this case, the different parts o
distribution do not contribute uniformly to the signal and
long time constantŝtapp& are obtained.

3.1.3. Restricted dynamics: Exponential relaxation.Next,
e turn to highly restricted dynamics. As mentioned ab

hese investigations are relevant for a forthcoming analys
xperimental results on theb process in supercooled liqui

and glasses (21). In what follows, we try to make such r
stricted motions visible by applying 2D2H NMR in time
domain. For that purpose, we simulate cos–cos correl
functions assuming reorientations on a cone. The cos
instead of the sin–sin correlation functions are now calcu
since, for experimental reasons concerning spin–lattice r
ation during the mixing time (19, 21), they were considered
our study of theb process. The opening angle of the cone is
to x 5 6° in all RW simulations where this particular value
motivated by our experimental findings (21, 42). Moreover, the
model of reorientations on a cone is chosen because, on th
hand, it is more flexible than a two-site jump, for exam
various jump anglesDc on the cone can be implemented a

n the other, it is still easy to simulate.
First, we calculate cos–cos correlation functions (D 5 15

ms) for the model of a random jump on the cone where
jump correlation timet j amounts to 10 ms. This means
study ultraslow motion to circumvent the above-discu
problems arising in the presence of faster dynamics fo
moment. The data for various evolution timest p together with
fits according to Eq. [10] (b tp 5 1) are compiled in Fig. 4.It is
obvious that, independent oft p, the time constants of th
different decayst tp

app well agree with the jump correlation tim
t j 5 10 ms as is expected for a random jump. On the o
hand, the amount of correlation remaining fort @ t which is

FIG. 3. Parameters obtained from fitting the data in Fig. 2 to Eq. [10
j
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reflected by the fit parameterCtp

cos strongly depends on th
evolution time. Almost no loss of correlation can be obse
for t p # 5 ms whereas a distinct decay appears for la
evolution times. Especially, in the range 5ms , t p , 55 ms,

tp

cos clearly decreases with an extension of the evolution t
Finally, if one appliest p . 55 ms the cos–cos correlati
functions are less affected by a similar variation of this de
We note that the observed dependence of the rest corre
Ctp

cos on t p is completely different from the one found
isotropic dynamics (11). However, a qualitatively similar d
pendence of the rest correlation ont p was reported for th
model of rotational diffusion on a cone withx 5 60° when
considering sin–sin correlation functions (13). Quantitatively
of course, much smaller absolute values of the rest corre
were found for a cone with opening anglex 5 60° than for the
one withx 5 6° in the present context. Furthermore, we
that we have also calculated the correlation functionf 2, i.e., the
sin–sin correlation function fort p 5 3 ms, using the model o
a random jump on a cone with an opening angle ofx 5 6°.
Like the cos–cos correlation function for a short evolution t
t p 5 5 ms in Fig. 4,f 2 exhibits no discernible loss. Therefo

a) Ratio^tapp&/tm; (b) stretching parameterttp; and (c) reduction factorRtp,D
2D (tm).

FIG. 4. RW simulations for the model of a random jump on a cone (x 5
°): cos–cos correlation functions fort j 5 10 ms and various evolution tim

t (four pulse sequence:D 5 15 ms). Dotted lines: fits using Eq. [10].
]: (
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52 VOGEL AND RÖSSLER
in experimental practice, it is very difficult to determine
correlation timest of highly restricted reorientations in ge

ral.
The dependence ofCtp

cos on the evolution time, displayed
Fig. 4, is understood if the filter effect oft p is taken into
account, cf. Eq. [4]. Investigating highly restricted moti
only small changes in frequency, typicallyDvQ, say, can occu
during the mixing time. If shortt p are chosen, these changes
not cause a detectable loss of correlation because the p
before and after the mixing time differ only a little byDvQt p !
1. However, increasingt p leads to larger differences in t
phases even for such smallDvQ and, therefore, a significa

ecay of the correlation functions can be observed.
Now, we look at what happens when the slow motion l

s left but sufficiently larget p are applied in order to make t
oss of correlation visible. Therefore, we calculate cos–
orrelation functions for a constantt p 5 32 ms but differentt j,

applying once again the model of a random jump on the c
The results and the fits according to Eq. [10] (b tp 5 1) are
ompiled in Fig. 5. It turns out that, for allt j $ 30 ms, the fits

yield time constantst tp

app which are in good agreement with t
jump correlation time. However, in comparison with the res
obtained for an isotropic random jump and a evolution
t p 5 3 ms, cf. Fig. 1a, the dependence of the rest correla

tp

cos on t is much stronger. Above all, reducingt j from 300 to
30 ms leads to a strong increase ofCtp

cos. For even shortert j, no
decay is visible any longer. These observations are plau
having in mind that, during the necessarily longer evolu
time t p for restricted motions, the effects of molecular dyn-
ics in this period are amplified. We note that the descr
findings gain some relevance if a distributionG(lgt) is presen

s discussed below.
All together, highly restricted dynamics can clearly be

erved in 2D NMR experiments in time domain if large e
ution times t p are applied. However, considering such sm
angle fluctuations it is difficult to determine the correla
time t in general.

FIG. 5. RW simulations for the model of a random jump on a cone (x 5
°): cos–cos correlation functions for differentt j (four-pulse sequence:D 5 15

ms, t p 5 32 ms). Dotted lines: fits using Eq. [10].
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3.1.4. Restricted dynamics: Nonexponential relaxa
Finally, we introduce a distributionG(lgt) for highly restricted
motions, too. In particular, we deal with very broad distri
tions typical of theb process in supercooled liquids a
glasses. As will be shown, when shifting such aG(lgt) through
the time window of 2D NMR in time domain peculiar resu
appear in the RW simulations which are similar to experim
tal findings to be presented elsewhere (21).

Once again, we consider a random jump on the cone.
however, we assume a very broad logarithmic Gaussian d
bution G(lgt) characterized bys 5 2.3, cf. Eq. [12]. In this
case, the corresponding full width at half maximum of
decades represents a typical value for distributions desc
theb process near the liquid to glass transition (27). According
to the experimental procedure where various temperature
considered, we simulate cos–cos correlation functions va
lgtm and keepingt p 5 32 ms fixed. As has been demonstra
for exponential relaxation, such large evolution times are
essary to obtain a discernible decay of the correlation f
tions, cf. Fig. 4. Again, the four-pulse sequence with an e
delay D set to 15ms is taken into account. The results
shown in Fig. 6, however, the displayed data are fur
damped by an exponential decay with a time constant eq
1 s. This additional damping is introduced in order to re
approximately the experimental situation where the ampl
of the stimulated echo is reduced by spin–lattice relaxation
by spin diffusion for long mixing times. As will become cle
below, the additional damping is necessary to allow a dem
stration of effects appearing in experiments for very b
distributionsG(lgt). Because of our proceeding, the resul
data in Fig. 6 show two decays: first, a strongly stretched
time decay caused by the loss of orientational correlation
to the considered motion and, second, an exponential long
decay because of the applied damping. Inspecting the

FIG. 6. RW simulations for the model of a random jump on a cone (x 5
°) assuming a very broad logarithmic gaussian distributionG(lgt) (s 5 2.3),
f. Eq. [12]: cos–cos correlation functions for different mean logarith
orrelation times lgtm (four-pulse sequence:D 5 15 ms, t p 5 30 ms). Dotted

lines: fits described in the text. The calculated data are damped by an
nential decay with a time constant of 1 s.
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53MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
time decay, a peculiar behavior becomes evident. Althougtm

is varied by 5 orders of magnitude no clear shift of
correlation function is visible. This is seen, for example, c
paring the data fortm 5 100 ms andtm 5 10 ms, respectively
Furthermore, the amount of correlation that is lost until
long time decay becomes effective att ' 100 ms exhibits
maximum usingtm 5 1 ms. For both shorter and longertm the

bservable loss of correlation is less pronounced.
These qualitative observations can be quantified by fi

he data to a KWW function, cf. Eq. [10], multiplied with
dditional exponential decay. The time constant of this e
ential decayTdamp, although known in the simulation, is vari

in the fitting procedure, too, in order to mimic the experime
situation. Nevertheless, for all curves,Tdamp ' 1 s is obtaine
from the fits in accordance with the used damping. Conce
the stretching parameter of the short time decayb tp, indepen-
dent oftm, small values of 0.346 0.01 are found due to th
broad distributionG(lgt). The time constant of this decayt tp

app

is reduced from about 35 ms fortm 5 1 s to about 1.3 ms fo
tm 5 10 ms. Thus, as already expected, a decrease oftm by 5
orders of magnitude causes only a variation int tp

app by a facto
of 30. Therefore, applying 2D NMR in time domain a
considering such broadG(lgt) it is impossible to extract co
ect correlation times. Instead, the measured time const
xed by the time window of the experiment and, hence, on
rder of a few milliseconds.
Nevertheless, information about the position of a br
(lgt) is available evaluating (12 Ctp

cos) as will now be
demonstrated. For that purpose, we look at the amou
correlation that is lost in the time window of 2D experime
when investigating such a distribution. On the one hand, fi
the data the amount of loss is expected to be reflected by2
Ctp

cos), on the other hand, it is supposed to depend on the nu
of molecules relaxing, i.e., on the part of the broad distribu
G(lgt) located in the experimental time window. Therefo
omparing both quantities as a function oftm perhaps a simila
ehavior should be found. If this were true a determinatio
1 2 Ctp

cos), using experimental data, indeed, would y
information about an unknown distribution. In order to ch
our speculations, we have to estimate the time window o
particular 2D experiment first. Toward longt, it is limited by
the long time decay imitating spin–lattice relaxation. T
decrease starts to dominate the decline of the stimulated
at t ' 100 ms, cf. Fig. 6. The lower boundary is about 100ms.
Using an evolution timet p 5 32 ms this approximation seem
to be reasonable because fort , 100 ms; first, there is only
slight decay of the correlation functions, cf. Fig. 5, and, sec
the contribution of sucht to the measured signal is smaller d
to the incomplete refocusing of the corresponding magne
tion, cf. also Fig. 1b. All together, the loss of correlat
detected in the 2D experiment should be connected wit
integral
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~1 2 Ctp

cos! } E
lg 100ms

lg 100 ms

G~lgt!dlgt. [13]

The values of this integral for severaltm and the fit paramete
(1 2 Ctp

cos) are shown in Fig. 7,respectively. As expected,
good agreement is evident. In particular, both curves exh
maximum attm ' 1 ms which has been anticipated in the
inspection of the data as well. Slight differences occur du
the rough estimation of the integration limits. These find
demonstrate that the quantity (12 Ctp

cos) is not only determine
by the geometry of a motion (11), but also correlated with th

umber of molecules relaxing in the time window of 2D NM
n time domain. Therefore, if the shape ofG(lgt) is approxi-
mately known a determination of (12 Ctp

cos) as a function o
temperature allows us to estimate the mean correlation tim
carrying out 2D NMR experiments.

It has turned out that it is impossible to measure the m
correlation time directly by applying 2D NMR in time doma
if an extremely broad distributionG(lgt) is present. Howeve
evaluating (12 Ctp

cos) yields at least a clue to the position
G(lgt). This result, explicitly demonstrated for highly
stricted motions, is expected to hold generally for distribut
broader than the experimental time window. Such broad
tributions appear, e.g., when investigating theb process in
supercooled liquids (27) or the reorientation of guest molecu
in glasses (35, 36).

3.2. 1D NMR Spectra

In the remaining part of this paper, we carry out RW s
ulations to calculate 1D2H NMR spectra for different dynam-
ical models. In all simulations, the solid-echo pulse sequ
with an echo delayt p is considered. Again, isotropic as well
highly restricted motions are taken into account but, h
exponential relaxation is solely discussed. In particular, c
plex molecular dynamics characterized by two different

FIG. 7. Parameter (12 Ctp
cos) obtained from fitting the data in Fig.

otted line: value of the integral in Eq. [13] for various lgtm.
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54 VOGEL AND RÖSSLER
constantst j , T*2 and t . T*2 is investigated, i.e., case 2
regarded. As mentioned above, we mainly follow the que
of whether such dynamics, which is usually analyzed by
plying multidimensional NMR techniques, can simultaneo
be studied by recording 1D spectra. If this were true, addit
information about the motion would be available since
dynamical model has to reproduce the results of 1D an
NMR experiments at the same time.

3.2.1. Isotropic dynamics: Exponential relaxation.In or-
der to obtain well-separated time constantst j , T*2 , t we
now consider an isotropic 3° jump. Using this model the ju
correlation timet j is by a factor of about 240 shorter than
correlation timet, cf. Eq. [8]. We calculate solid-echo spec
arying both t and the echo delayt p. First, we keep th

correlation time fixed at a valuet 5 100 ms, i.e., right in th
ime window of 2D NMR, and simulate the spectra for diff
nt echo delays. The results are compiled in Fig. 8. Clearly

ineshape of the spectra changes ift p is extended although at
@ T*2 is chosen. On the other hand, such changes do
appear, simulating an isotropic random jump with the s
correlation timet 5 100 ms as a reference. This is evid
nspecting the 1D spectrum found for that kind of motion
p 5 200 ms displayed in Fig. 8, too. The differences betw

both models can be understood comparing the jump corre
timest j. Whereast j equalst for the isotropic random jump,
much smallert j 5 411ms corresponds to the used correla
time for the isotropic 3° jump. Therefore, in contrast to
random jump, considering the latter model molecular dyna
takes place during the solid-echo pulse sequence whic
lead to effects in the 1D spectra. We note that, applying
t p and looking at an isotropic 15° jump characterized byt 5 1

s andt 5 100 ms, changes in the lineshape are obse

FIG. 8. RW simulations for the model of an isotropic 3° jump (t 5 100
s, t j 5 411 ms): 1D 2H NMR spectra for different echo delayst p in the

olid-echo sequence. Dotted line: 1D2H NMR spectrum for an isotrop
random jump (t 5 t j 5 100 ms) and an echo delayt p 5 200 ms.
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which are similar to those for the isotropic 3° jump displa
in Fig. 8.

If the 1D lineshape for larget p is affected by molecula
dynamics one will expect a dependence on the correlation
This can be checked by calculating 1D spectra for varioust .
T*2 and a fixed echo delayt p 5 100 ms. The spectra obtain
for the model of an isotropic 3° jump are shown in Fig
Indeed, a distinct dependence of the lineshape ont is obvious
Looking at a correlation time of 1 s aspectrum typical of rigi
molecules is observed. Of course, this is reasonable sinc
correspondingt j amounts to about 4.1 ms and, thus, molec
dynamics during the pulse sequence is negligible. In o
words, case 1 is valid for this correlation time. On the o
hand, inspecting the spectra for correlation times in the m
second regime changes in the lineshape are found which a
more pronounced the smallert. They are brought about b
elementary jumps which occur during the pulse sequence
considering sucht for an isotropic 3° jump. For these pairt
andt j, case 2 is met. These findings demonstrate that th
spectra shown are indeed influenced by molecular dyna
althought . T*2 is valid.

Summarizing, two prerequisites have to be fulfilled in o
to obtain lineshape changes fort . T*2. First, the conditiont j

, T*2 (case 2) must hold. Concerning the mechanism
reorientation, this means that the loss of correlation has
achieved gradually by many elementary small angle ju
taking place one after another. Second, it is essential to
large echo delayst p. The long echo delays are necess
because consideringt . T*2 at most a few elementary sm
angle jumps occur during the solid-echo sequence and, h
the NMR frequencyvQ is shifted just a little. The connectio

FIG. 9. RW simulations for the model of an isotropic 3° jump: 1D2H
NMR spectra for various correlation timest (solid-echo sequence:t p 5 100
ms).
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55MOLECULAR DYNAMICS EFFECTS STUDIED BY RANDOM WALK SIMULATIONS
betweent p and the amount of variation invQ will be explained
n detail below where the particular lineshape of the spe
ill also be discussed. In conclusion we add that investiga

he a process in supercooled liquids experimentally sim
changes in the lineshape have been found for correlation
t . T*2 and large echo delayst p (16, 43). However, a system-
atic analysis of these 1D spectra comparing various typ
isotropic dynamics is, to our knowledge, still missing.

3.2.2. Restricted dynamics: Exponential relaxation.As
noted above, highly restricted dynamics can only be studie
applying 2D NMR in time domain if large evolution timest p

are chosen. Furthermore, it is well known that this kind
dynamics is difficult to observe in 2D NMR spectra beca
the ellipses resulting for such small angle fluctuations are

FIG. 10. RW simulations for the model of a random jump on a cone (x 5
6°, t 5 t j 5 30 ms): 1D 2H NMR spectra for the solid-echo sequence w
arious echo delayst p.

FIG. 11. RW simulations for the models of a random jump on a cone
orrelation functions (four-pulse sequence:t p 5 18 ms,D 5 15 ms), inset: ap
equence:t 5 100 ms) for the pairs (Dc, t ) indicated in (a).
p j
ra
g
r
es

of

by

f
e
rd

to distinguish from diagonal intensity (1). Here, we want t
investigate how highly restricted motions affect 1D2H NMR
pectra. According to our goal we once again simulate r
ntations on a cone with an opening anglex 5 6° as was don

when considering 2D NMR in time domain.
First, we calculate 1D spectra assuming a random jum

this cone. Again, botht and the echo delayt p are varied in th
simulations. We start keeping the jump correlation time fi
The spectra fort j 5 t 5 30ms and varioust p are shown in Fig
10. If the echo delay is set to 20ms a spectrum is found
which no effects of the considered motion can be recogn
althought is chosen right in the time window of 1D NM
This indicates that highly restricted dynamics cannot be
served in 1D spectra recorded in the ordinary way using s
echo delays, as is well known from other investigations9).
However, applying larger echo delays, changes in the lines
appear which are more pronounced the largert p as is clearly
seen in Fig. 10. On the other hand, when fixing the echo d
at a large value a strong dependence of the spectra o
correlation time is found, too. For example, the changes i
lineshape for at p 5 100ms disappear using at j 5 1 ms for the
random jump on the cone, cf. Fig. 11b (RJ).

Analyzing the 1D spectra in Fig. 10 more precisely it
comes evident that mainly the intensity in the middle of
spectrum declines when extendingt p. In the following, we try
to explain this finding on a qualitative level. Consider
highly restricted motions the molecular orientation and, t
the NMR frequency varies only a little. Obviously, these sm
changes invQ are not sufficient to affect the 1D spectra
smallt p. This becomes clear when inspecting Eq. [2]. Prov
that, at a timet 5 t p, a small angle rotational jump cause
slight shift in frequency byDvQ, the phasesf(0, t p) andf(t p,
2t p) differ by DvQt p. Using a smallt p this phase shift is to
little to affect the building of the echo significantly. Howev
increasing the echo delay leads to larger phase shiftsDvQt p

of a rotational jump about various polar anglesDc on a cone (x 5 6°): (a) cos–co
d anglesDc and jump correlation timest j; (b) 1D 2H NMR spectra (solid-ech
and
plie
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56 VOGEL AND RÖSSLER
and, consequently, to effects in the spectra. Therefore,
plausible that, for highly restricted dynamics, changes in
lineshape can solely be observed by applying larget p. Consid-
ering an isotropic 3° jump with at @ T*2, similar spectra wer
observed in Fig. 8. This is understood taking into account
under these circumstances, a just as restricted area of th
sphere is covered during the pulse sequence and, henc
considerations hold for this kind of motion as well.

The particular lineshape of the 1D spectra for largt p

becomes clear taking into account the angular dependen
vQ(u), cf. Eq. [1]. Assuming for simplicity that the restrict
motions change the molecular orientation during the solid-
sequence by approximately the same small amountDu, the
resulting frequency shiftsDvQ depend only on the derivatio
of vQ(u). Comparatively largeDvQ and, hence, large pha
shiftsDvQt p result for NMR frequencies where the curvevQ(u)
is steep. As a consequence, molecules characterized by
initial vQ contribute less to the echo and the spectral inte
at these positions declines the most. InspectingvQ(u) it is
obvious that the curve is flat foru ' 0° andu ' 90° corre
sponding to the outer edges and the singularities, respec
whereas it is steep foru ' 54° causing intensity in the midd
of the spectrum. Therefore, the intensity in the latter part o
spectra is reduced in the presence of restricted motions.

Apart from the random jump, we now study reorientati
on the cone which involve a constant polar angleDc. Using
this example, we want to demonstrate that restricted mo
characterized by time constantst . T*2 andt j , T*2 (case 2
cause changes in the 1D lineshape as well. Moreover, we
to investigate the dependence of the spectra on the jump
Dc. However, when looking at this model one problem ar
because the correlation timet for a certain pair (t j, Dc) is not
known a priori. This difficulty results from the fact that Eq.
is only valid for isotropic motions, but, of course, a depende
of t on the jump angleDc is expected in our model, to
Nevertheless,t can be roughly estimated considering in
RW simulations the correlation function for a evolution timt p

which, on the one hand, is large enough to lead to a dis
decay in the case of a restricted motion but, on the other,
small as possible to still obtain a fair guess oft. Here, we
chooset p 5 18 ms.

According to our goal, we calculate 1D spectra resulting
motions on the cone which are characterized by different
anglesDc but a similart of about 1 ms. Here, we chooseDc 5
9, 20, and 45°. In order to obtain a comparable correlation
when using differentDc we simulate the cos–cos correlat
functions fort p 5 18 ms varyingt j until a time constantt tp

app 5
ms is observed, respectively. The decays are displayed i
1a where the resultingt j are indicated as well. Using the

pairs (t j, Dc) we calculate the 1D spectra corresponding t
cho delayt p 5 100 ms, cf. Fig. 11b. For comparison, t

spectrum found assuming a random jump witht 5 t j 5 1 ms
is included, too. Obviously, completely different linesha
result for the considered models. Whereas in the case
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random jump a spectrum typical of rigid C–D bonds is
served, distinct changes in the lineshape are seen for rota
jumps about constant anglesDc. The observed changes
similar to those in Fig. 10. Further, they are more pronou
the smallerDc. The latter finding becomes reasonable insp
ing the jump correlation timest j corresponding to variou
anglesDc. Of course, considering smaller angles, shortet j

must be used to obtain a similar correlation function, cf.
11a. Therefore, the smallerDc the more molecular reorient
tions take place on the time scale of the solid-echo sequ
and, consequently, the more strongly the lineshape is affe

All together, it has turned out that highly restricted moti
can be studied by recording 1D NMR spectra if large e
delays t p are applied in the solid-echo sequence. Moreo
similar to the results for isotropic motions, we have fo
changes in the lineshape of these spectra even fort . T*2
provided that case 2 is valid, i.e.,t j , T*2. The latter resu
once again demonstrates that with measuring correlation
tions and 1D spectra simultaneously further information a
the mechanism of molecular reorientation is available, w
will be particularly important when investigating theb proces
in supercooled liquids and glasses (21, 42).

4. CONCLUSION

By carrying out RW simulations we have calculated 1D2H
NMR spectra and the results of 2D2H NMR experiments i
time domain for various dynamical models. Until now,
latter experiment was mainly applied to measure the cor
tion function f 2 for ultraslow motions. Here, we have syste-

tically studied whether this technique can also be use
etermine the corresponding correlation timet when consid

ering faster dynamics. It has turned out that one has to d
guish between exponential relaxation and nonexponenti
laxation caused by a distribution of correlation timesG(lgt).
Concerning exponential relaxation we have shown that
correlation timesD # t , T*2 can be measured by applyi
2D 2H NMR in time domain if an extended phase cycle (28) is

sed. Therefore, the time window of this experiment is
arged by approximately 2 decades and a dynamical r
ecomes accessible for 2D NMR which was reserved

ineshape analysis of 1D NMR spectra in the past. Howe
he situation changes if there is a distribution of correla
imes G(lgt). Then, the resulting nonexponential correla
functionf 2 is not properly measured by 2D NMR as soon as
distribution contains correlation timest , T*2. This finding is
understood taking into account that magnetization of mole
with t , T*2 is not completely refocused in the appl
four-pulse sequence and that, hence, various parts ofG(lgt) do
not uniformly contribute to the measured signal. Howe
knowing the mechanism of molecular reorientation thes
fects can be calculated. Consequently, it is, despite th
scribed problems, useful to apply mixing times which ar
short as possible.
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Strictly speaking, in the presence of a distributionG(lgt),
deviations between real and measured correlation function
appear if some of the jump correlation timest j out of the
corresponding distributionG(lgt j) are on the order of th
delayst p andD, respectively. Thus, one has to be particul
careful when investigating motions like thea process in su
percooled liquids which are characterized by a distributio
correlation times and for which the loss of correlation
achieved by rotational jumps about small angles sincet j is
much shorter thant in this case. This caution is even m
important if large evolution timest p @ D are used to determin
he value of the elementary jump angle by carrying out
MR experiments in time domain. For this kind of meas
ent one has to ensure that all appearingt j are long with

respect to the applied evolution timest p in order to obtain
correct results.

Furthermore, we have investigated the effects of hi
restricted dynamics on 2D NMR experiments in time dom
Such small amplitude reorientations can clearly be observ
large evolution timest p are applied. For shortt p and, thus, inf 2,
of course only a very small amount of correlation is l
Therefore, it is generally, independent of its actual value,
difficult to determine the correlation timet of highly restricted
motions. A puzzling situation appears if a distributionG(lgt)

roader than the experimental time window is taken into
ount. In this case, the time constant of the correlation fun
or a sufficiently larget p is only slightly affected by a stron
hift of G(lgt) but it is to a high extent given by the tim

window of the 2D experiment itself. Nevertheless, a ro
estimate of the position ofG(lgt) is available by analyzing th
amount of loss which is achieved in the measured correl
function. Although these results have explicitly been obta
for restricted dynamics, we expect similar observations
other motions and shortt p.

Using RW simulations we have moreover demonstrated
molecular dynamics with correlation timest . T*2, in NMR
usually studied by applying multidimensional techniques,
simultaneously be investigated by recording 1D NMR spe
provided that the conditiont j , T*2 is fulfilled for the jump
correlation time. In other words, case 2 has to be valid. C
cerning the mechanism of the considered motion the
requirement means that the loss of correlation mus
achieved gradually because only then a distinct separati
the time scales oft andt j is obtained. Furthermore, one has
apply sufficiently large echo delayst p in order to make th
effects of the elementary rotational jumps visible in the s
trum. These remarks hold, similarly, for isotropic and
highly restricted motions. However, shifting the time cons
into the regimet , T*2, i.e., considering case 3, both kinds

ynamics manifest themselves differently. Of course, loo
t isotropic and anisotropic large angle reorientations on

ime scale, changes in the spectral lineshape can be obs
or short t p as well [3]. On the other hand, highly restric
motions even then do not affect 1D NMR spectra meas
ill
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with short echo delays. Instead, larget p must be used to dete
this dynamics anyway.

All together, we have shown that the time windows
different NMR techniques which were assumed to be fixe
most prior work become indistinct when studying comp
molecular dynamics. In this case, they depend not only o
correlation timet but also on the mechanism of the conside
molecular dynamics. In particular, when investigating mot
where the loss of correlation is achieved step by step, the
correlation timet j must be taken into account as well. F
example, ift andt j differ by many orders of magnitude it
possible that the same small step motion simultaneously
ifests itself inT1, 1D, and 2D NMR experiments. Therefo
carrying out all these measurements at the same time
additional information about molecular dynamics since
dynamical model must describe all resulting NMR obs
ables. Such a simultaneous description is, on the one ha
very challenging task and, on the other, it demonstrates
NMR is a powerful tool when revealing the mechanism
complex molecular dynamics.

We close with the remark that RW simulations have pro
to be well suited to calculating the results of 1D and 2D2H
NMR experiments in the presence of complex molecular
namics. In particular, simulating 1D2H NMR spectra for suc
motions is a straightforward task. Although all RW simulati
have been carried out for the special case of2H NMR, it is
expected that similar results will be observed considering
nuclei with a dominating single particle interaction like13C

r 31P.
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